
TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Information Technology

Heikki Orsila

Support Vector Machines with Applications

Master of Science Thesis

Subject approved at Department council meeting on
05.06.2002
Examiner:

Prof. Keijo Ruohonen (TUT)
Prof. Timo D. Hämäläinen (TUT)

1

Alkulause

Tahdon kiittää diplomityöni ohjaajia Jukka Saarinen ja Mikko Lehtokangas hyvistä
neuvoista ja mahdollisuudesta tehdä tätä työtä. Sen lisäksi annan kiitokset tämän
työn tarkastajille, Keijo Ruohonen ja Timo D. Hämäläinen, rakentavasta palaut-
teesta.

Haluan myös kiittää perhettäni tuesta opiskelu-urallani. Ilman sopivaa kannustusta
tätä ei välttämättä olisi tapahtunut. Lisäksi tahdon kiittää ystäviäni oikeanlaisen
kiinnostuksen ylläpitämisestä.

Tampereella 17.05.2004

Heikki Orsila

Opiskelijankatu 4E275

33720 Tampere

heikki.orsila@tut.�

puh. 040 7325989

2

Foreword

I want to thank my supervisors Jukka Saarinen and Mikko Lehtokangas for giving me
good advice and the opportunity to work on this subject. Also, I thank examiners
of this work, Keijo Ruohonen and Timo D. Hämäläinen, for constructive feedback.

I also want to thank my family for support in my studying career. Without appro-
priate guidance this might not have happened. Additionally I want to thank my
friends for keeping me interested in right kind of topics.

Tampere, May 17, 2004

Heikki Orsila

Opiskelijankatu 4E275

33720 Tampere

heikki.orsila@tut.�

tel. 040 7325989

3

Contents

1 Introduction 11

I Theory 12

2 Statistical Learning Theory 12

2.1 Introduction . 12

2.2 Basics . 12

2.3 Empirical Risk Minimization . 13

2.4 The Capacity of the Learning Machine 15

2.5 Structural Risk Minimization . 17

2.6 Di�erent Approaches to SRM . 19

3 Linear Learning Machines 20

3.1 Introduction . 20

3.2 Linear Classi�cation . 20

3.3 Linear Separation . 20

3.4 Maximal Marginal Classi�er . 21

4 Optimization Theory 23

4.1 Introduction . 23

4.2 Convex Functions . 23

4.3 Theory . 25

4.3.1 Primal Problem . 25

4.3.2 Convex Optimum Theorem 26

4.3.3 Minimum Maximum Existence Theorem 26

4.3.4 Kuhn-Tucker Theorem . 26

4.3.5 Lagrangian Function . 27

4.3.6 Su�cient Conditions for Kuhn-Tucker Theorem 27

4

4.3.7 Stronger Su�cient Conditions for Kuhn-Tucker Theorem . . . 27

4.3.8 Maximal Marginal Classi�er Solution 28

4.3.9 Example: Minimal Sphere Bounding Problem 30

5 Support Vector Machines 32

5.1 Introduction . 32

5.2 SVM Learning Theory . 32

5.3 C-SVM . 32

5.3.1 C-SVM problem formulation in Rn 33

5.3.2 C-SVM problem solution in Rn 33

5.3.3 Kernel C-SVM . 36

5.4 Cn-SVM . 38

5.5 ν-SVM . 39

5.6 Function Approximation with SVM 40

5.7 Application Methods . 40

5.7.1 Parameter Estimation . 40

5.7.2 Quadratic Programming . 40

5.7.3 Sample Decomposition . 40

5.7.4 Sequential Minimal Optimization 41

II Practice 42

6 Empirical Tests 42

6.1 Dimensionality Test . 42

6.1.1 Problem . 42

6.1.2 Consideration . 42

6.1.3 Test Data . 43

6.1.4 Simulation . 45

6.1.5 Analysis . 46

5

6.2 Ionosphere Data . 48

6.2.1 Problem . 48

6.2.2 Background . 48

6.2.3 Data . 48

6.2.4 Simulation . 49

6.2.5 C-SVM Results . 49

6.2.6 Cn-SVM Results . 50

6.2.7 Discussion . 50

6.3 Phoneme Recognition . 52

6.3.1 Problem . 52

6.3.2 Data . 52

6.3.3 Simulation . 53

6.3.4 Results . 56

6.3.5 Discussion . 60

III Discussion and Conclusions 63

7 Discussion 63

7.1 Higher Dimensions . 63

7.2 Pattern Recognition . 63

7.3 Radial Basis Function Neural Networks 64

7.4 Support Vector Transformation for Image Compression 64

8 Conclusions 66

IV Related Material 67

6

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniikan osasto

Matematiikan laitos ja digitaali- ja tietokonetekniikan laitos

ORSILA, HEIKKI: Support Vector Machines with Applications

Diplomityö, 74 s.

Tarkastajat: Prof. Keijo Ruohonen ja Prof. Timo D. Hämäläinen

Rahoittaja: Tampereen Teknillinen Yliopisto

Toukokuu 2004

Avainsanat: tukivektorikone, neuroverkot, hahmontunnistus

Tukivektorikone (Support Vector Machine) on suhteellisen uusi neuroverkkotyyppi,
joka lähestyy aihepiiriä tilastollisen riskin minimoimisen näkökulmasta. Mahdolli-
nen hyöty tukivektorikoneesta on parempi yleistämiskyky kuin perinteisillä neu-
roverkoilla.

Tämä diplomityö käsittelee tukivektorikone-tyyppisiä neuroverkkoja ja niiden sovel-
luksia tietyissä hahmontunnistustehtävissä. Erityisesti työn tavoitteena on eräältä
teollisuusyritykseltä annetun puheentunnistusongelman ratkaiseminen. Lisäksi työn
tarkoituksena on arvioida tukivektorikoneiden soveltuvuutta yleisesti hahmontunnis-
tustehtäviin, ja verrata sillä saavutettuja tuloksia muilla neuroverkoilla saavutettui-
hin tuloksiin.

Ensimmäiseksi tukivektorikoneita sovelletaan keinotekoiseen moniulotteiseen luokit-
telumalliin, jotta voitaisiin arvioida tukivektorikoneiden kykyä suoriutua suurista
ulottuvuusmääristä. Testi osoittaa tukivektorikoneen pääsevän lähelle teoreettisesti
mahdollista luokittelukykyä.

Toiseksi tukivektorikoneita sovelletaan ilmakehän mittauksien luokitteluun. Mit-
tauksien luokittelutuloksia verrataan muiden neuroverkkojen vastaaviin tuloksiin
samassa tehtävässä. Tukivektorikoneet havaitaan varsin kilpailukykyiseksi välineeksi
tähän tehtävään hyvin pienellä esikäsittelyvaivalla. Lisäksi havaitaan, että tätä
tutkimusta varten muokattu versio tukivektorikoneista antaa pienen, mutta havait-
tavan, parannuksen tähän luokittelutehtävään.

7

Kolmanneksi tukivektorikoneita sovelletaan puheentunnistusongelmaan. Tälle ongel-
malle etsitään ratkaisua, joka käyttää mahdollisimman pientä määrää tukivektore-
ita. Suuri tukivektoreiden määrä on neuroverkolle laskennallisesti työlästä ja vähen-
tää neuroverkon yleistämiskykyä. Tulokset validoivat teollisuusyrityksen tuoteke-
hityksen saamia tuloksia riippumattomasti. SMO-algoritmin todetaan soveltuvan
parhaiten tähän ongelmatyyppiin. Sopivalla harjoitusnäytteiden valinnalla löydetään
luokittelija, jonka tukivektoreiden kokonaismäärä on riittävän pieni. Tukivektorei-
den kokonaismäärän rajoittamista valitsemalla harjoitusnäytteet verrataan toiseen
tukivektorikone-algoritmiin, joka tuottaa ratkaisuja joissa tukivektoreiden määrä on
rajoitettu jo ongelman asettelussa, ja todetaan että se ei tuo lisähyötyä tässä sovel-
luksessa. Ongelman ratkaisuksi suositellaan polynomi -tyyppistä tukivektorikonetta.

Lisäksi esitellään algoritmi häviölliselle kuvanpakkaukselle käyttäen tukivektorikoneita.
Algoritmi muuntaa lohkoja kuvasta Lagrange-kerroinavaruuteen, jossa olisi tarkoi-
tus olla vähemmän informaatiota kuin alkuperäisessä kuvassa. Menetelmää käyt-
täen pystytään häviöllisen kuvanpakkauksen tarkkuutta säätämään ennakoitavasti.
Menetelmän toimivuutta ei kuitenkaan validoitu tässä työssä. Siitä riippumatta se
vaikuttaa kiinnostavalta jatkotutkimuksen kohteelta.

8

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Information Technology

Department of Mathematics and Institute of Digital and Computer Systems

ORSILA, HEIKKI: Support Vector Machines with Applications

Master of Science Thesis, 74 pages

Examiner: Prof. Keijo Ruohonen and Prof. Timo D. Hämäläinen

Funding: Tampere University of Technology

May 2004

Keywords: support vector machine, neural network, pattern recognition

The thesis covers Support Vector Machine type Neural Networks and their applica-
tions on speci�c pattern recognition tasks.

Financial support for the work was provided by Tampere University of Technology.

Support Vector Machine is a relatively new Neural Network type approaching the
subject area from Structural Risk Minimization principle. The suggested bene�t of
Support Vector Machine is better generalization ability than with traditional Neural
Networks such as Multilayer Perceptrons.

Support Vector Machines were applied to 3 speci�c cases of pattern recognition tasks.
One of the cases uses data from a real speech recognition problem from an industrial
company.

9

Abbreviations

BSP Binary Space Partitioning

ERM Empirical Risk Minimization

FTP File Transfer Protocol (Internet protocol)

LP Linear Programming

MLP Multilayer Perceptron

PCA Principal Component Analysis

QP Quadratic Programming

RBF Radial Basis Function

SMO Sequential Minimal Optimization

SRM Structural Risk Minimization

SVM Support Vector Machine

SVT Support Vector Transformation

VC Vapnik-Chervonenkis (dimension)

10

1 Introduction

Machine Learning means computational methods to know, predict, guess, estimate
and explain issues based on known data and environment.

Computational units that do Machine Learning are called Learning Machines. An
example of Machine Learning is a computer program that plays chess against hu-
man or computer players, and learns to play better through its experience. A good
learning machine should learn from its mistakes against opponents.

Pattern recognition is a concept of machine learning. It consists of computational
tasks that try to assign task speci�c data into one of many classes. Pattern recog-
nition task is often based on measurements from empirical experiments. A learning
machine will try to learn important details of measurements with some assistance
or additional data.

An example of the pattern recognition task would be a set of pictures, where some
pictures contain an image of a human face and some pictures don't [13]. A learning
machine is told which pictures contain a face and which don't. Based on this data, a
learning machine would try to decide whether some given picture contains a face or
not. This task is non-trivial since formulating properly how people recognize faces
is unknown.

Support Vector Machine (SVM) is a class of learning machines used mainly for pattern
recognition tasks. SVMs became a general interest in pattern recognition in early
1990s through successful experiments and interesting theoretical issues. Since then
there has been a lot of research on the subject. SVMs have been compared to older
methods, such as Multilayer Perceptron Neural Networks, and have been found to
perform better in many cases.

This thesis looks into use of SVMs in general pattern recognition tasks and appli-
cations. Part I of this thesis describes theory of SVMs brie�y. Part II describes 3
cases of SVM applications. Finally Part III discusses advantages and disadvantages
of SVMs and gives conclusions based on earlier parts.

11

Part I

Theory

2 Statistical Learning Theory

2.1 Introduction

From pattern recognition perspective Statistical Learning Theory tries to establish
good theoretical frameworks to determine the class of an observation from the en-
vironment. The class for an observation may be good, bad, 0, or 1, depending on
circumstances and the environment. The decision is based on some set of observa-
tions and their known classes (the data). This thesis will occasionally refer to sets,
but they are not used in the same sense as the mathematical concept of set. Here
same entries can exist multiple times in the same set so the proper name is multi-set.
However, unless explicitly speci�ed, the set will here refer to a multi-set.

In many cases the amount of example data is small, and the feature space is multi-
dimensional. Usually this means there is only a small set of vectors from Rn to base
the decision on. This can cause great trouble for a learning machine, especially if the
machine lacks some special knowledge of the system being learned. Feature space is
the mathematical space where the decision is made. Most commonly it is Rn where
n is a small number.

Statistical Learning Theory investigates how to learn as much as possible from a
small (or large) amount of data. Other subjects are how much data is needed to
achieve certain level of performance with a learning machine, or what is the maximum
knowledge that can be learned from a speci�c set of data.

2.2 Basics

Assume a pattern prediction task with a multidimensional input space X. Let Y be
the output space. Data vectors x from X are associated with output values y from
Y . The output space of the problem is Y = {0, 1}, hence consisting of binary values.
For example output value of 0 could mean bad, and 1 good.

Given a set of sample data consisting of pairs zi = (xi, yi), where i = 1, 2, ..., l, �nd
the best possible output value y, according to some model of performance, for any

12

given vector x in X.

A teacher gives the set of right answers for vectors x in data set {zi}. Assume the
teacher knows a function f(x), which can give the best possible, even correct, output
for all vectors x in X. Hence f(xi) = yi.

The goal is to �nd a learning machine, a function F (x, w), which tries to mimic the
teacher and realise its answers for all vectors x in X. Besides choosing a suitable
function family for F , the parameter vector w needs to be determined from the
weight space W (usually Rn). In a case where the learning machine is a Neural
Network, its weight values are represented by a vector w. In the optimum situation
f = F , which implies the learning machine has learned everything from the teacher.

From statistical learning theory perspective it is not only interesting what would be
the best possible value for w, but what is the right size for the structure (capacity)
of the learning machine (e.g. the dimension of w) in order to achieve good results.

To achieve good results the learning machine must be able to make good predictions
for the data it has not seen before (seen in the learning phase). This goal de�nes
how well the learning machine generalizes.

Choosing the right capacity for the learning machine is very essential in order for
it to be successful in learning. Capacity of the learning machine means how much
data it can learn to classify correctly. With too high a capacity the machine learns
all data that is presented to it, but may predict unseen data worse than a machine
with lower capacity. This phenomena is called over�tting.

On the other hand, with too low a capacity for the machine it can't perhaps learn
even the easy patterns. A low capacity has the advantage that it is very unlikely to
over�t the data, so it has potentially a better generalization ability.

Choosing the right capacity for a learning machine is hard. In case of Neural Net-
works the dimension of w a�ects the capacity. The higher the dimension higher the
capacity.

2.3 Empirical Risk Minimization

To measure how well learning machine does compared to the teacher, a measure is
needed to compare two results for the given x from input space X. The teacher
gives one result, and the machine gives the other. A loss function L(a, b) is used
to measure di�erences between the teacher and the machine. One example of loss

13

function L is L(a, b) = (a − b)2, where a and b belong to output space Y . The
loss function compares two answers given for an input vector x that is presented to
the teacher and the learning machine. For example, teacher maps x into a correct
answer a, and the learning machine maps x into its estimate b. A high loss function
value indicates big di�erence between two given answers. The following expression
is evaluated to compare the teacher f and the learning machine F :

ε = L(f(x), F (x,w))

If ε = 0 the learning machine F is correct, otherwise it is not totally correct. Depend-
ing on the application the machine can be partially correct. In a binary classi�cation
task the machine is either totally correct or totally wrong. Given a set of vectors
x an empirical probability for correctness can always be constructed. An Empirical
Risk Function computes an empirical probability of not being correct.

Empirical Risk Minimization Given a set of sample data (xi, yi) where i =

1, 2, ..., l empirical risk function is de�ned as:

Remp(w) =
1

l

l∑

i=1

L(f(xi), F (xi,w)) =
1

l

l∑

i=1

L(yi, F (xi,w))

Empirical Risk Minimization (ERM) is to �nd w∗ ∈ W which minimizes the empir-
ical risk function Remp(w).

For pattern recognition purposes the following loss function is usually used:

L1(y, F (x,w)) =

0, if y = F (x,w)

1, if y 6= F (x,w)

The empirical risk function for this loss function gives an empirical probability of
error:

Remp(w) =
1

l

l∑

i=1

L1(yi, F (xi,w))

If a learning machine F is trained with sample data xi, the data set is called training
data. The empirical risk associated with the training data is called training error.

14

Data not shown during training is called test data. The associated empirical risk is
called training error.

An important concept for learning machines is generalization error. It is the risk
over the whole input space. The whole input space can only be tested in very special
cases, and hence the generalization error must be estimated when needed. Training
error is often used as an approximation of generalization error.

2.4 The Capacity of the Learning Machine

Assume a data set D containing n di�erent samples (here it is mathematically correct
to call D a set). Binary labelling of data set D means that each sample in D

has a binary label 0 or 1. For a given w∗ the classi�er function F (x,w∗) gives a
speci�c binary labelling for point x. A learning machine F (x,w) has a VC (Vapnik-
Chervonenkis) dimension of at least n, if for any binary labelling of data set D there
exists a w∗ such that the classi�er function F (x,w∗) gives the same binary labelling
for each point x in the data set D. The VC dimension of F (x,w) is the largest n

such that the previous statement holds for some data set D. It is not required that
the statement holds for all possible data sets D. It needs only hold for some data
set D.

Example:

Assume a family of classi�er functions R2 → {0, 1}:

{
ϕ(wTx + b) | w ∈ R2, b ∈ R

}

where w denotes weight vector and b bias. ϕ is an activation de�ned as:

ϕ(t) =

1, t ≥ 0

0, t < 0

Given 3 separate points x, y and z in R2 with arbitrary binary labellings, the given
family of classi�er functions can classify each point correctly, provided that the 3
points are not on the same line. This is shown in the left picture of Figure 1.

Therefore the VC dimension of the function family is at least 3. The VC dimension is
3 since with 4 or more di�erent points they could not have arbitrary binary labellings

15

x

w

z

w
x

y

z

Figure 1: On the left there are 3 points in R2 which can be classi�ed. On the right
there are 4 points in R2 which can not be classi�ed totally correctly

and be classi�ed all correctly with a line. This can be seen in the right picture of
Figure 1. No (w, b) exists such that it can separate {x, z} from {y,w}.
More generally, classi�er function family

{
ϕ(wTx + b) | w ∈ Rm, b ∈ R

}

has VC dimension of m + 1.

In practice VC dimension relates to dimension of free parameters ((w, b) in the
previous example) so that higher dimension usually implies higher VC dimension.
In MLP (multilayer perceptron) neural networks with sigmoid activation function

ϕ(t) =
1

1 + exp(−t)

the VC dimension is proportional to n2
w, where nw is the total number of free pa-

rameters in the network.

In theory, VC dimension of family of classi�er functions can be in�nite with just one
free parameter. This is true because arbitrary amount of information can be encoded
into just one real number. For example, pick a function

f(x, c) = sgn(cr(x))

where c is a free parameter that is presented in binary form as

c = ± · · · c1c0.c−1c−2 · · ·

16

where ci ∈ {0, 1} and i ∈ Z. Function r(x) : R → Z rounds a number x in R to the
nearest integer in Z.

Now it is possible to choose arbitrary number of points belonging to Z, and choose
digits of c so that they match arbitrarily given binary labels for those points in Z.
Thus the VC dimension of this set of classi�er functions is in�nite.

2.5 Structural Risk Minimization

The goal of the learning machine is to minimize generalization error on the underlying
task. In practice this means to minimize the empirical error on data that has not
been seen in the training process. With a small amount of training data it is easy
to over�t a learning model to the available data and thus have lesser generalization
ability.

Vapnik [25] investigated theoretical aspects that link the generalization ability to the
VC dimension h of a learning machine and the amount of training data N available.
An upper bound for generalization error is:

vgene < vguaranteed = vtrain + e1(N, h, vtrain)

where e1(N, h, vtrain) is the con�dence interval which depends on the accepted risk
for misclassi�cation. Details can be found from [25, 9, 8]. vgene, vguaranteed and vtrain

are generalization, guaranteed and training errors respectively. Vapnik's suggestion
was to minimize guaranteed error instead of generalization error, because general-
ization error is usually unknown. Minimizing the guaranteed error minimizes the
upper bound of generalization error. Generally speaking structural risk minimiza-
tion methods such as SVMs try to �nd the minimum guaranteed error. Figure 2
shows relationship between training error, con�dence interval, and guaranteed error.

Assume there is a collection of families ξk of classi�er functions representing di�erent
learning machines. Each family ξk is a class of learning machines with a speci�c
weight space size.

ξk = {F (x,w) | w ∈ Wk}, k = 1, ..., n

where the families are in increasing weight space order:

ξ1 ⊂ ξ2 ⊂ . . . ⊂ ξn−1 ⊂ ξn

17

Guaranteed risk
(bounded on generalisation error)

Confidence interval

Training error

Error

VC dimension, h

Figure 2: Relationship between training error, con�dence interval, and guaranteed
risk

VC dimensions hi of families ξi satisfy

h1 ≤ h2 ≤ . . . ≤ hn−1 ≤ hn

Structural Risk Minimization With these de�nitions Structural Risk Minimiza-
tion (SRM) can be described with following procedure:

1. Train all n learning machines (ξk) with the same training data.

2. The learning machine, associated with a classi�er function family ξk, which has
the lowest guaranteed risk is considered the best choice.

Learning machine families should be constructed in increasing VC dimension order.
Adding hidden neurons to a simple MLP neural network is an example of this.

Knowing the guaranteed risk is the hardest part of this approach. It is not possible
without knowing the exact VC dimension of each learning machine, because the
upper bound for generalization error depends on it. Therefore the guaranteed risk
must be estimated.

Usually the guaranteed risk is estimated with an empirical risk based on test data.
The test data must not belong to training data that was used in training. Usually
only a tenth of test data is needed compared to training data to gain accurate
estimates of guaranteed risk.

18

2.6 Di�erent Approaches to SRM

Basically two approaches for SRM are used.

1. First choose capacity (VC dimension) for the learning machine, then minimize
the quaranteed risk.

2. First choose quaranteed risk, and then minimize capacity for the learning ma-
chine.

Traditional Multilayer Perceptron neural networks employ the �rst approach, but
Support Vector Machines use the second approach.

19

3 Linear Learning Machines

3.1 Introduction

This section introduces Linear Learning Machines, a basic concept of pattern recogni-
tion theory. Generally speaking Linear Learning Machines form a decision boundary
between two classes in a feature space. This knowledge is later used to inspect mech-
anisms of SVMs. The idea of SVMs is to �nd an optimal decision boundary between
two classes in an implicit feature space. The feature space is implicit since it may
not be known explicitly.

3.2 Linear Classi�cation

Assume two classes of points in Rn with l points together. Let those points be de�ned
as xi where i = 1, . . . , l. Linear Classi�cation is using an a�ne function f(x) to
classify point x into one of two classes, either class 1 or class 2. If f(x) ≥ 0, x is
assigned to class 1, otherwise class 2.

A�ne function f has presentation f(x) = wTx + b, where w ∈ Rn. w is often
referred to as the weight, and b as the bias term.

Linear Learning Machines Learning Machines that do Linear Classi�cation are
called Linear Learning Machines.

3.3 Linear Separation

Assume each point xi is associated with yi, where yi = 1 when xi belongs to class 1,
and yi = −1 when xi belongs to class 2. These are later called positive and negative
classes respectively.

Equation wTx + b = 0 de�nes the set of points x belonging to the hyperplane.
Hyperplane has two parameters that de�ne it: w ∈ Rn and b ∈ R. Here hyperplanes
are named with respect to their parameters as a pair (w, b).

These points of two classes are linearly separable if there exists a hyperplane (w, b)

such that

wTxi + b > 0 when xi belongs to class 1 (yi = 1)

and

20

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5
Linearly Separable Classes

class 1
class 2
decision line

Figure 3: Two linearly separable classes

wTxi + b < 0 when xi belongs to class 2 (yi = −1)

That is

yi(w
Txi + b) > 0 for all xi

Figure 3 shows an example of linearly separable classes.

Functional margin of a point x with respect to hyperplane (w, b) is de�ned as wTx+b.

The distance of a point x from the hyperplane (w, b) can be computed with:

δ =
|wT x+b|
‖w‖

δ is called the geometrical margin of point x with respect to the hyperplane.

3.4 Maximal Marginal Classi�er

Assume point xm belonging to class 1 with geometrical margin δm is the closest
point in it's class to the hyperplane and respectively point xn belonging to class 2
with geometrical margin δn is the closest point in it's class to the same hyperplane.
Hyperplane (w, b) is called optimal separator or maximal marginal classi�er if δm =

δn. Notice that if hyperplane (w, b) separates two classes, then so does (cw, cb) for
all c > 0. Thus c may be chosen so that optimal separator hyperplane (cw, cb) has
functional margin of ±1 for xm and xn. Assume (w, b) has that property.

Now the total geometrical margin for optimal hyperplane (w, b) is:

δm + δn = 2δm = 2
|wT xm+b|

‖w‖ = 2
‖w‖

21

When functional margins are restricted to as described then minimizing the Euclidean
norm of hyperplane normal gives the maximal geometrical margin. Notice that for
all points xi: yi(w

Txi + b) ≥ 1 is satis�ed.

Maximal marginal classi�er problem can now be formulated as a minimization prob-
lem of the following form.

Minimize

1
2
‖w‖2

with respect to (w, b) when satisfying boundary conditions

yi(w
Txi + b) ≥ 1 for i = 1, . . . , l

Solution of this problem is a hyperplane (w∗, b∗). Then the optimal decision function
for classifying points into one of two classes is

f(x) = w∗T
x + b∗

Point x is classi�ed as follows:

• classi�ed to class 1, if f(x) > 0

• classi�ed to class 2 otherwise

This problem is investigated in more detail in Section 4, Optimization Theory.

22

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������A Non−Convex SetA Convex Set

Figure 4: An example of a convex set at left, and a non-convex set at right.

4 Optimization Theory

4.1 Introduction

Some basic optimization theory is presented in this chapter. These concepts will
be essential to understanding how SVM based machine learning works. First the
concept of convex functions is introduced, which is very relevant to SVM learning
and mathematical optimization theory in general. Then properties and examples of
convex optimization are presented with suitable applications in focus.

4.2 Convex Functions

Convex Set Set E ⊂ Rn is convex if tx + (1 − t)y ∈ E for all x,y ∈ E and
t ∈ [0, 1]. Figure 4 shows an example of a convex and a non-convex set.

Convex Functions Function f : E → R is a convex function, if

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x 6= y ∈ E and t ∈ (0, 1). An example of a convex and a non-convex function
is shown in Figure 5.

Examples
Here are a few examples of convex functions, which will be later used in SVM context.

A�ne Functions
Function f : Rn → R is a�ne, if it has the form f(x) = bTx + c where b ∈ Rn and
c ∈ R. A�ne functions are convex since

23

A Convex Function A Non−Convex Function

Figure 5: An example of a convex function at left, and a non-convex function at
right.

f(tx + (1− t)y) = bT (tx + (1− t)y) + c = t(bTx) + (1− t)(bTy) + tc + (1− t)c

= t(bTx + c) + (1− t)(bTy + c) = tf(x) + (1− t)f(y)

Quadratic Functions

Function f(x) = xT Ax, where A is positive semide�nite matrix, is a convex function.
The following proof is taken from [11] p.46.

Let x,y ∈ Rn and t ∈ (0, 1). Now

0 ≤ f(x− y) = xT Ax− xT Ay − yT Ax + yT Ay,

since A is positive semide�nite. So

xT Ay + yT Ax ≤ xT Ax + yT Ay

Thus

f(tx + (1− t)y) = (tx + (1− t)y)T A(tx + (1− t)y)

= (txT A + (1− t)yT A)(tx + (1− t)y)

= t2xT Ax + t(1− t)xT Ay + t(1− t)yT Ax + (1− t)2yT Ay

= t2xT Ax + t(1− t)[xT Ay + yT Ax] + (1− t)2yT Ay

≤ t2xT Ax + t(1− t)[xT Ax + yT Ay] + (1− t)2yT Ay

= t2xT Ax− t2xT Ax + txT Ax + tyT Ay − t2yT Ay + (1− t)2yT Ay

= txT Ax + (t− t2 + (1− t)2)yT Ay

= txT Ax + (t− t2 + 1− 2t + t2)yT Ay = txT Ax + (1− t)yT Ay

= tf(x) + (1− t)f(y)

24

Composite Functions

If gi(x), where i = 1, ..., n, are convex functions, and ci > 0 for all i, then

f(x) =
∑n

i=1 cigi(x)

is convex too.

4.3 Theory

Some basic optimization theory is presented here to support optimization in SVM
context. Especially optimization of quadratic functions with a�ne boundary con-
straints is needed with SVM learning.

4.3.1 Primal Problem

Minimize f(w) with respect to w, satisfying following conditions (boundary con-
straints):

gi(w) ≤ 0, i = 1, ..., m (inequality constraints)
hj(w) = 0, j = 1, ..., p (equality constraints)

Functions f : Rn → R, gi : Rn → R and hj : Rn → R are continuous and di�er-
entiable in Rn (well behaved in other words). Constraints can be written in vector
form as follows:

g(w) ≤ 0

h(w) = 0

The feasible region of the problem is that set F for which all constraints are satis�ed.

F = {w ∈ Rn | g(w) ≤ 0,h(w) = 0}

It may not be trivial to �nd any point from the feasible region F for a given problem
even when such points exist.

When constraints are linear functions the optimization problem is called linear pro-
gramming (LP) problem. When they are quadratic functions the problem is called
quadratic programming problem (QP).

For a given feasible solution w∗ inequality constraint gi(w
∗) ≤ 0 is said to be active

if gi(w
∗) = 0, otherwise it is inactive.

25

4.3.2 Convex Optimum Theorem

If f ∈ C1(R) is convex and w∗ satis�es ∇f(w∗) = 0 in unconstrained optimization
problem, then w∗ is the global optimum point.

Proof Choose any point u 6= w∗. Since w∗ is local minimum, that is ∇f(w∗) = 0,
there exists a value t close enough to 1 such that

f(w∗) ≤ f(tw∗ + (1− t)u)

And since f is convex

f(tw∗ + (1− t)u) ≤ tf(w∗) + (1− t)f(u)

And so it must be that

f(w∗) ≤ tf(w∗) + (1− t)f(u)

(1− t)f(w∗) ≤ (1− t)f(u)

f(w∗) ≤ f(u)

So w∗ is a global minimum, which is not necessarily unique. See also [11] p.45-46
(section 3.2.2) or [8] p.81 (section 5.2) for proof.

4.3.3 Minimum Maximum Existence Theorem

If the feasible region F is closed and bounded, and f is continuous, then f has a
minimum and a maximum in F . Later on C-SVM optimization problem will have
guaranteed minimum based on this theorem.

Proof See one of many mathematical analysis books, such as [15] section 4.15.

4.3.4 Kuhn-Tucker Theorem

Let w∗ ∈ F be a feasible solution to a given primal problem. The necessary condition
(Kuhn-Tucker conditions) for w∗ to be the minimum point is that there exist
λi ≥ 0, µj ∈ R such that

∇f(w∗) +
∑m

i=1 λi∇gi(w
∗) +

∑p
j=1 µj∇hj(w

∗) = 0

λigi(w
∗) = 0 for all i = 1, ..., m

gi(w
∗) ≤ 0 and hj(w

∗) = 0 for all i = 1, ..., m and j = 1, ..., p

26

Proof See [1].

Points satisfying these conditions are called Kuhn-Tucker points. Kuhn-Tucker The-
orem is central to many practical continuous optimization problems.

4.3.5 Lagrangian Function

De�ne λ = [λ1, λ2, ..., λm]T and µ = [µ1, µ2, ..., µp]
T

The Lagrangian function related to the previous Kuhn-Tucker Conditions (4.3.4) is

L(w, λ, µ) = f(w) +
∑m

i=1 λigi(w) +
∑p

j=1 µjhj(w)

or

L(w, λ, µ) = f(w) + g(w)T λ + h(w)T µ

Kuhn-Tucker Conditions in Theorem 4.3.4 can be written as
∂L(w,λ,µ)

∂w
= ∇f(w) + g′(w)T λ + h′(w)T µ = 0

λigi(w
∗) = 0 for all i = 1, ..., m

gi(w
∗) ≤ 0 and hj(w

∗) = 0 for all i = 1, ..., m and j = 1, ..., p

4.3.6 Su�cient Conditions for Kuhn-Tucker Theorem

Kuhn-Tucker Conditions presented in Theorem 4.3.4 are su�cient, if functions gi are
convex, hj are a�ne and there exists such w that gi(w) < 0 for all i and hj(w) = 0

for all j.

Proof See [1].

This theorem is used in Section 4.3.8 to solve a maximal margin classi�er problem.

4.3.7 Stronger Su�cient Conditions for Kuhn-Tucker Theorem

Kuhn-Tucker Conditions presented in Theorem 4.3.4 are su�cient, if f is convex
and has a continuous �rst derivative, and the optimization domain is convex, and
functions gi and hj are a�ne, and there exists such w that gi(w) ≤ 0 for all i and
hj(w) = 0 for all j.

27

Proof See [1].

This theorem is used in Section 5.3 to solve one of the core problems.

4.3.8 Maximal Marginal Classi�er Solution

The maximal marginal classi�er was formulated in Section 3.4, and now the opti-
mization framework is applied to solve it. The solution here leads to a QP problem.
The problem restated is:

Minimize

1
2
‖w‖2

with respect to (w, b) when satisfying boundary conditions

yi(w
Txi + b) ≥ 1 for i = 1, . . . , l

It is assumed here that an optimal solution for the optimization problem exists, that
is, classes to be separated are linearly separable.

Objective function f(w), which should be minimized, and l inequality contraint
functions gi(w) are de�ned as follows:

f(w) = 1
2
wTw

gi(w) = 1− yi(w
Txi + b) ≤ 0 for all i = 1, ..., l

Now the Lagrangian function is

L(w, b, α) = f(w) +
∑l

i=1 αigi(w) = 1
2
wTw +

∑l
i=1 αi −∑l

i=1 αiyi(w
Txi + b)

Theorem 4.3.6 shows important properties of the optimum point w∗, because f

is a convex function, and constraint functions gi are a�ne, and such w exists that
gi(w) < 0 for all i because classes are linearly separable. Hence there are the following
necessary and su�cient requirements for w∗ to be an optimum with b∗, α∗:

∂L(w∗,b∗,α∗)
∂w

= 0,
∂L(w∗,b∗,α∗)

∂b
= 0,

α∗i gi(w
∗) = 0, i = 1, ..., l

gi(w
∗) ≤ 0, i = 1, ..., l

α∗i ≥ 0, i = 1, ..., l

Then

28

∂L(w,b,α)
∂w

= w −∑
αiyixi = 0 or w =

∑
aiyixi

and
∂L(w,b,α)

∂b
= −∑

αiyi = 0

De�ne X = [x1,x2, ...,xl]
T , y = [y1, y2, ..., yl]

T , diagonal matrix Y = diag(y1, y2, ..., yl),
α = [α1, α2, ..., αl]

T and 1 = [1, 1, ..., 1]T ∈ Rl.

So, previous optimality conditions become

w = XTyα and 1T α = 0

Substituting these back to Lagrangian gives

L(w, b, α) = 1
2
wTw +

∑l
i=1 αi −∑l

i=1 αiyi(w
Txi + b)

= 1
2
(XT Y α)T (XT Y α) + 1T α− Σl

i=1[(X
T Y α)T αiyixi + αiyib]

= 1
2
(XT Y α)T (XT Y α) + 1T α− (XT Y α)T Σl

i=1αiyixi − Σl
i=1αiyib

= 1
2
αT Y XXT Y α + 1T α− αT Y XΣl

i=1αiyixi − bΣl
i=1αiyi

= 1
2
αT Y XXT Y α + 1T α− αT Y X(XT Y α)− b ∗ 0

= −1
2
αT Y XXT Y α + 1T α

Which gives a quadratic programming problem, which solves the optimization task:

Minimize

−1
2
αT Y XXT Y α + 1T α

with respect to α, when

α ≥ 0

If α∗ is the optimal solution, then b∗ can be solved. Choose any αi such that αi > 0.

From necessary and su�cient conditions of the optimization problem it must hold
that

α∗i gi(w
∗) = 0

Since α∗i > 0 it must be that gi(w
∗) = 0. Hence

gi(w
∗) = 1− yi(w

∗T
xi + b∗) = 0

which implies

b∗ = yi −w∗T
xi = yi − α∗

T
Y Xxi

29

4.3.9 Example: Minimal Sphere Bounding Problem

Assume l points xi in Rn and the goal is to �nd a sphere centered at x∗ with minimal
radius r such that it contains all points xi. It must be assumed here that not all
points xi are the same, otherwise the problem is trivial.

The optimization problem reduces to:

Minimize

r2

with respect to (x, r) such that following inequality constraints are satis�ed

‖xi − x‖2 ≤ r2 for i = 1, ..., l

r ≥ 0

Now it is assumed that the solution exists without any proof. Hence it can be
deduced that the solution exists at some Kuhn-Tucker Point (necessary condition
due to Kuhn-Tucker Theorem 4.3.4).

Problem restated is:

Minimize

f(x, r) = r2

when

gi(x, r) = xT
i xi − 2xTxi + xTx− r2 ≤ 0 for i = 1, ..., l

−r ≤ 0

The Lagrangian function is

L(x, r, α, γ) = r2 +
∑l

i=1 αi(x
T
i xi − 2xTxi + xTx− r2) + γ(−r)

It is known that for optimal solution r > 0 so Lagrange multiplier γ is zero for the
optimal solution. The last term is dropped from the Lagrangian function, because
it is zero.

From Necessary Kuhn-Tucker Conditions for optimal solution it must be that
∂L(x,r,α,γ)

∂r
= 2r − 2r

∑
αi = 0 that is 2r(1−∑

αi) = 0

Since r > 0 for optimal solution, it must be that ∑
αi = 1.

Also ∂L(x,r,α,γ)
∂x

=
∑

αi(−2xi + 2x) = 2
∑

αix − 2
∑

αixi = 2x
∑

αi − 2
∑

αixi = 0.
Since ∑

αi = 1, it follows that 2x
∑

αi = 2x = 2
∑

αixi. And hence

30

x =
∑

αixi

De�ne (as in the previous example) X = [x1,x2, ...,xl]
T , α = [α1, α2, ..., αl]

T , c =

[xT
1 x1,x

T
2 x2, ...,x

T
l xl]

T and 1 = [1, 1, ..., 1]T ∈ Rl.

Previous optimality conditions, necessary Kuhn-Tucker conditions, become

x = XT α

1T α = 1

Now assuming (x, r) is optimal:

L(x, r, α, γ) = r2 +
∑l

i=1 αi(x
T
i xi − 2xTxi + xTx− r2)

= r2 − r2 ∑
αi +

∑l
i=1 αi(x

T
i xi − 2xTxi + xTx)

=
∑l

i=1 αix
T
i xi − 2xT ∑

αixi + xTx
∑

αi

= cT α− 2xTx + xTx

= cT α− xTx

= cT α− (XT α)T (XT α)

= cT α− αT XXT α

which becomes a QP problem:

Maximize

cT α− αT XXT α

with respect to α when

α ≥ 0

1T α = 1

31

5 Support Vector Machines

5.1 Introduction

This section introduces common Support Vector Machine (SVM) theory and methods
as well as an applied variant of the SVM classi�er (5.4) with special applications in
mind. SVMs are compared to other learning machines.

5.2 SVM Learning Theory

SVM system is theoretically di�erent from many existing learning methods like MLPs
with back-propagation. SVM training is an SRM method. It has an SRM method
built directly into the learning process. MLP training can also be categorized into
SRM methods if the size of the MLP network is tuned appropriately. Di�erences
between ERM and SRM were discussed in Section 2.5.

An SRM method has two parts:

• minimize the machine construction (learning machine capacity)

• minimize the empirical risk (Section 2.3)

The order of these two parts is not �xed. Usually both are not optimized simulta-
neously. Instead, the other factor is �xed while the other is being optimized. MLPs
and SVMs di�er in this.

In MLP training the machine construction (learning capacity) is chosen �rst, and
the empirical risk is minimized afterwards. In SVM training the empirical risk is
�xed before training, and the machine construction (learning capacity) is minimized
afterwards. In other words, both implement an SRM method but in complementary
ways.

5.3 C-SVM

C-SVM, or soft margin classi�er SVM, is a binary classi�er, which was introduced
in 1995 by Cortes and Vapnik [6]. C-SVM was a major breakthrough in applicability
of SVMs.

32

C-SVM maps samples from input space into one of two classes. Those two classes
are −1 and +1. Unlike maximal margin classi�er in Section 3.4, C-SVM allows data
sets to be linearly non-separable. The predecessor of C-SVM was optimal margin
classi�er by Boser, Guyon and Vapnik [2]. It was limited to linearly separable data
sets.

5.3.1 C-SVM problem formulation in Rn

C-SVM is similar to maximal margin classi�er in 3.4 except that it allows classes to
be linearly non-separable. A cost is assigned for breaking linear separability. The
problem is:

Minimize
1
2
‖w‖2 + C

∑l
i=1 ξi

with respect to (w, b) and ξ when satisfying boundary conditions:

yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0

for i = 1, . . . , l

A high level interpretation of this problem formulation is a maximal margin classi�er
which tolerates crossing the decision boundary (w, b) with a cost factor of C. If ξi = 0

for a given vector xi then that vector does not cross the boundary because for that
vector yi(w

Txi + b) ≥ 1 is satis�ed. If 0 < ξi < 1 the vector is classi�ed correctly
but it is so near the decision boundary that a cost of Cξi is assigned. If ξi ≥ 1 the
vector is classi�ed erroneously. A cost associated with this case is Cξi. The higher
the ξi more costly it is.

This minimization problem has a compromise between separating the two classes
as well as possible (minimize term 1

2
‖w‖2) and having the tolerance cost (minimize

term C
∑l

i=1 ξi) as low as possible. Choosing the C value sets the level of compromise.

5.3.2 C-SVM problem solution in Rn

Assume that a solution for the optimization problem exists. A rigorous mathematical
proof is not important here, but notice Theorem 4.3.7. The objective function is
convex, and it has a continuous derivative, and the optimization domain is convex,

33

and inequality constraints are a�ne. Based on this theorem Kuhn-Tucker conditions
can be used to transform the problem into a Quadratic Programming problem. The
optimization task reformulated is:

f(w, b, ξ) = 1
2
‖w‖2 + C

∑l
i=1 ξi

g1
i (w, b, ξi) = 1− ξi − yi(w

Txi + b)

g2
i (ξi) = −ξi

for i = 1, . . . , l.

Now the Lagrangian function is

L(w, b, ξ, α, β) = f(w) +
∑l

i=1 αig
1
i +

∑l
i=1 βig

2
i

L(w, b, ξ, α, β) = 1
2
wTw + CΣl

i=1ξi +
∑l

i=1 αi(1− ξi − yi(w
Txi + b)) +

∑l
i=1 βi(−ξi)

De�ne 1 = [1, 1, ..., 1]T .

Now �nd the necessary (and su�cient) conditions for the optimum:
∂L(w,b,ξ,α,β)

∂w
= w −∑

αiyixi = 0, or w =
∑

αiyixi

and
∂L(w,b,ξ,α,β)

∂b
= −∑

αiyi = 0

and
∂L(w,b,ξ,α,β)

∂ξ
= C1− α− β = 0, or α + β = C1

De�ne

X = [x1,x2, ...,xl]
T

y = [y1, y2, ..., yl]
T

Y = diag(y1, y2, ..., yl)

α = [α1, α2, ..., αl]
T

β = [β1, β2, ..., βl]

ξ = [ξ1, ξ2, ..., ξl]

Using de�nitions of X and Y previous optimality conditions become

w = XT Y α

1T α = 0

α + β = C1

34

Substituting these back to Lagrangian gives

L(w, b, ξ, α, β)

= 1
2
wTw + CΣl

i=1ξi +
∑l

i=1 αi(1− ξi − yi(w
Txi + b)) +

∑l
i=1 βi(−ξi)

= 1
2
(XT Y α)T (XT Y α) + C1T ξ +−(α + β)T ξ + 1T α +

∑l
i=1−αiyi((X

T Y α)Txi + b)

= 1
2
(XT Y α)T (XT Y α)+(C1T −(α+β)T)ξ+1T α−∑l

i=1(X
T Y α)T αiyixi−b

∑l
i=1 αiyi

= 1
2
(XT Y α)T (XT Y α) + 0T ξ + 1T α− (XT Y α)T ∑l

i=1 αiyixi − b ∗ 0

= 1
2
(XT Y α)T (XT Y α) + 1T α− (XT Y α)Tw

= 1
2
(XT Y α)T (XT Y α) + 1T α− (XT Y α)T (XT Y α)

= −1
2
(XT Y α)T (XT Y α) + 1T α

= −1
2
αT Y XXT Y α + 1T α

Which is surprisingly the same cost function as with maximal margin classi�er.
However, bounds for the optimizing problem are di�erent.

Lagrangian theory tells that α ≥ 0 and β ≥ 0. Combine this with the optimum
condition α + β = C1, and it must be that α ≤ C1.

Also, instead of minimizing the cost function Lagrange theory tells to maximize the
Lagrangian function. This is supported by the observation that the minimum for the
cost function (quadratic convex function) does not exist since it is −∞. Therefore
the optimization problem is

Minimize

1
2
αT Y XXT Y α− 1T α

with respect to α when satisfying boundary constraints

0 ≤ α ≤ C1

yT α = 0

Theorem 4.3.3 shows that this optimization problem has a minimum, because con-
straints form a closed space. Now it follows from Kuhn-Tucker optimality conditions
that the optimum weight vector wo is:

wo = XT Y α

35

To have a complete linear classi�er for Rn the b constant is also needed. The b

constant can always be determined from active boundary conditions. Consider the
optimum point wo and active boundary constraints that satisfy 0 < αi < C. The
equality from boundary constraints optimum conditions is αi + βi = C. Thus βi > 0

because αi < C for all such active boundary constraints, and hence it must be that
ξi = 0 because βi was a Lagrange multiplier for ξi. Hence g1

i (w, b, ξi) = 1 − ξi −
yi(w

T
o xi + b) = 1 − yi(w

T
o xi + b) which implies means that g1

i (w, b, ξi) = 0 because
the constraint was active. Then 0 = 1− yi(w

T
o xi + b) which leads to:

bo = yi −wT
o xi

If numerical precision is in doubt, bo can be averaged among all active boundary
constraints satisfying 0 < αi < C.

The resulting classi�er is:

wT
o x + bo = αT Y T Xx + bo =

∑l
i=1 αiyix

T
i x + bo

For the optimal classi�er in Rn, wT
o x+ bo > 0 implies x belongs to positive class +1,

otherwise negative class −1.

5.3.3 Kernel C-SVM

Generally used C-SVMs di�er from the previously shown method by doing the clas-
si�cation in an implicit feature space determined by a kernel function K(x,y). The
kernel function K maps two vectors from Rn into some, perhaps unknown, high
dimensional feature space and computes an inner-product between x and y in that
space.

Ordinary feature map function φ(x) transports x into another feature space more
suitable for classi�cation. For example in common pattern recognition φ(x) =

FFT (x) can be used as a feature map to extract frequency components from a
time window x. This is desirable of course only when frequency components have
relevant information for classi�cation.

The kernel function K(x,y) =< φ(x), φ(y) > must satisfy special properties so that
the implicit feature space exists. The inner-product < ·, · > in the implicit feature
space has the form

< φ(x), φ(y) > = Σλiφi(x)φi(y)

36

where λi ≥ 0. The feature space can be in�nite dimensional, which is often the case
with SVMs. Function φ is not explicitly needed as long as kernel function K satis�es
the conditions set in Mercer theorem [7].

Mercer Theorem Let X be a compact subset of Rn. Let K be a continuous sym-
metric function (K(x,y) = K(y,x)) such that the integral operator TK : L2(X) →
L2(X),

(TKf)(·) =
∫
X K(·,x)f(x)f(z)dxdz

is positive, that is
∫
X×X K(x, z)f(x)f(z)dxdz ≥ 0,

for all f ∈ L2(X). Then we can expand K(x, z) in a uniformly convergent series (on
X ×X) in terms of TK 's eigen-functions φj ∈ L2(X), normalized in such a way that
‖φj‖L2

= 1, and positive associated eigenvalues λj ≥ 0:

K(x, z) =
∑∞

j=1 λjφj(x)φj(z)

The previous derivation of SVM learning algorithm using QP depends only on inner-
products of vectors xi in feature space Rn. This extends to all implicit feature spaces
induced by kernel function K satisfying the Mercer theorem. The objective function
for QP is

1
2
αT Y XXT Y α− 1T α

Matrix XXT is the same as matrix M = (K(xi,xj))
l
u,j=1 when K(x,y) = xTy.

Hence the objective function is

1
2
αT Y MY α− 1T α

The Mercer theorem is satis�ed if K is symmetric (K(x,y) = K(y,x) for all x and
y) and if K ≥ 0 (positive semide�nite). [8] p.33 contains a proof of this su�cient
condition.

Some common kernel functions K used are depicted in table 1. Choosing the kernel
means choosing the implicit feature space used for the pattern classi�er. Polynomial
kernel of dimension p can learn all p dimensional polynomial features, whereas radial-
basis function kernel is a highly local classi�er centered around the other kernel
function parameter. Where polynomial kernel has a �nite dimensional feature space,
the Implicit feature space of the radial-basis function kernel is in�nite dimensional.

37

Table 1: Summary of Kernel functions
Kernel type Kernel function Parameters and comments
Polynomial kernel (xTy + 1)p Positive integer p
Radial-basis function kernel exp(− 1

2σ2‖x− y‖2) Standard deviation σ
Two-layer perceptron tanh(β0x

Ty + β1) Mercer not satis�ed for all β0 and β1

With the implicit feature space some mechanism is needed to classify arbitrary vec-
tors from the input space. The classi�er wT

o x+ b is evaluated to determine the class
of vector x as follows:

wT
o x + b = (XT Y α)Tx + b = αT Y Xx + b = αT Y

K(x1,x)

...

K(xl,x)

 + b

Still, a kernel method is needed to determine constant b. The formula bo = yi−wT
o xi,

where i is an index of a support vector with 0 < αi < C, can easily be adapted into
the kernel function case:

bo = yi −wT
o xi = yi − αT Y

K(x1,xi)

...

K(xl,xi)

Now the kernel case optimization problem is:

Minimize
1
2
αT Y KY α− 1T α

with respect to α with boundary constraints

0 ≤ α ≤ C1

yTα = 0

This is the most important SVM speci�c optimization problem for practical appli-
cations. There are several methods discussed later to solve it.

5.4 Cn-SVM

C-SVM optimization problem in Section 5.3 tries to minimize
1
2
wTw + C

∑
ξi

+ boundary constraints shown before

38

In a binary classi�cation task it may be preferred to decrease risk of misclassi�cation
of some class. For example the positive class may be more important to classify
correctly than the negative class. C-SVM is not suitable for this since it assigns
constant loss (C) for all training samples. Cn-SVM is a modi�ed method to overcome
this limitation.

The di�erent approach is to give a separate loss constant for each training sample.
Cn-SVM optimization problem tries to minimize

1
2
wTw +

∑
Ciξi, where Ci > 0

+ boundary constraints shown before

Ci may be chosen to be higher for a class of interest, hence tolerate less loss for that
class.

Deriving the optimization solution for this problem is not harder than for C-SVM,
and it goes the same way, so the result of derivation is only stated here:

Minimize

1
2
αT Y XXT Y α− 1T α

with respect to α with boundary constraints

0 ≤ αi ≤ Ci for i = 1, ..., l

yTα = 0

Notice that only boundary constraints of αi have changed in the quadratic program-
ming task. Hence this is very similar to C-SVM. Kernel function case is as before.

5.5 ν-SVM

A new method called ν-support vector classi�cation [16] allows to control the number
of support vectors resulting from training. An implementation of this algorithm can
be obtained from a website [5] authored by Chih-Chung Chang and Chih-Jen Lin.
Theoretical aspects of this SVM type are beyond the scope of this thesis.

39

5.6 Function Approximation with SVM

SVMs are extendible to function approximation applications as well. With MLP
networks function approximation is taken as granted, while SVMwas originally aimed
at classi�cation. Vapnik, Golowich and Smola showed �rst how to apply SVM to
function approximation in [24].

5.7 Application Methods

5.7.1 Parameter Estimation

Estimating parameters, such as C or any kernel parameters, for SVM is generally a
brute force task. Iterating over training and veri�cation phases of the given problem
is currently the only known method to �nd out good parameters. Methods for
determining free parameters have been investigated without signi�cant results.

5.7.2 Quadratic Programming

Since SVM training was originally formulated as a quadratic programming task ear-
lier publications have used this approach. However, QP is not well suited for big
data sets since the memory requirement is O(n2) with respect to training samples n.
The kernel matrix K needs memory on order n2. When n = 10000 this yields almost
800 Megabytes of memory as 64-bit �oating-point values. QP optimization scales to
n of several thousands, but not higher than that.

5.7.3 Sample Decomposition

Sample Decomposition (chunking) can use quadratic programming as a tool. It is
not a full solution to the problem. It needs help of other training algorithms to be
used.

The brief idea of Sample Decomposition [12] is to start with a small subset of the
training set. Train the subset. Drop all the non-support vectors from the subset, and
see which samples of the rest of the big training set give false classi�cations. Insert
samples with false classi�cations into the subset and start over again by training the
new set. Iterating this process works for tens of thousands of samples, since only a
small amount, say 10%, of the full training set is used at any step of the training

40

process. However, this process does not solve the problem that memory consumption
is still O(n2) with respect to number of active support vectors n.
This approach shows the bene�t of SVMs. All the training data that was not relevant
(not belonging to the support vector set) could have been discarded before training
and the same optimal result would still have been reached.
Experiments such as the face recognition application in [13] show that Sample De-
composition is a viable tool for training in practice. However, Sequential Minimal
Optimization (SMO) algorithm in 5.7.4 has proven to be still a lot better. Sample
Decomposition scaled up feasible training set sizes by a factor of 10 when it was
invented, but SMO did even better.

5.7.4 Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) was a major breakthrough in SVM training.
The idea was originally implemented by Platt [14].
SMO splits QP problems into series of smallest possible QP subproblems. SMO has
memory complexity of O(n) with respect to training set size n. This allows SMO
algorithm to scale to very large QP problems. However, for the reasons of practi-
cal e�ciency SMO algorithms use sample cache that is proportional to something
between linear and quadratic memory complexity. SMO optimization is a kind of
discrete optimization algorithm. It iterates a simple process of changing two samples
of the training set at a time to approach the global minimum. Time complexity of
SMO is probably non-polynomial, but it can stop the iteration process at any given
time and get a valid answer for the given task. Experimental results show that SMO
is very useful in practice, and it converges fast into an acceptable result. The SMO
implementation used in the work of this thesis can be found from [4, 5].
The brief idea of SMO is to start with QP task with all Lagrange multipliers zero.
Then see which 2 samples associated with Lagrange multipliers violate the boundary
constraints most. Set those 2 samples as support vectors and �x Lagrange multipliers
of those two samples so that equality constraint of the QP problem is preserved and
cost function decreases. Iterate this process as long as acceptable result is reached.
A great bene�t of SMO algorithm is that it can be used without quadratic program-
ming libraries. Reimplementation of QP libraries is a big task, but reimplementation
of SMO is not. Of course this is not a theoretical bene�t, but a practical bene�t
anyway. Practice is important in adoption of pattern recognition techniques. Most
SVM techniques used apply SMO.

41

Part II

Practice

6 Empirical Tests

6.1 Dimensionality Test

6.1.1 Problem

SVM infrastructure is promising in the way that it tries to avoid hardships of high
dimensional input space training data by doing training indirectly in an implicit
(sometimes explicitly known) feature space. The optimization problem complexity
depends on the amount of training data rather than the input space dimension.
In practice e�ectiveness of this approach has to be veri�ed empirically. This is
tested with two high dimensional normally distributed random data with the same
covariance matrices C = δ2I. Dimensionality of data is varied to see how it a�ects
learning ability of the SVM.

6.1.2 Consideration

SVM training can be modelled as a quadratic programming optimization problem
in a space which has the dimension of the number of training data. This is di�erent
from traditional MLP networks since they are optimized in a space which has the
dimension related to the number of input space dimensions. With MLP networks
it's important to reduce the dimension of training space by cutting unnecessary
connections in the network, that is, setting as many weights to zero as possible.
A high amount of training is not an obstacle but an advantage when best possible
generalization performance is targeted with MLPs. Trained SVM has the evaluation
function:

y(x) =
∑n

i=1 yiαiK(xi,x) + b

where n is the amount of training data used.

With SVM it's also important to reduce the number of supports vectors, that is to
have as many weights αi set to zero as possible, to make the function better behaved
(to have supposedly better generalization ability).

42

When input space dimension grows MLP networks increase in weight space size.
With SVMs it doesn't happen directly from input space dimension, but from data
that is used for training. The network complexity is linked to training data com-
plexity. SVM tries to create a high dimensional boundary surface to the implicit
feature space to separate between classes. Complexity of the boundary surface is re-
lated primarily to training data but also to input space dimension. Increasing input
space dimension makes the boundary surface more complex, and hence causes more
weights (more support vectors).

Testing separation of two d dimensional normally distributed classes with same
covariance matrix has the advantage that the optimal solution is known analyti-
cally, and so the empirical SVM solution can be compared the optimal solution in
Bayesian statistics sense. Optimal classi�er actually reduces to decision function
d(x) = aTx + b where a is d dimensional vector and b is a bias term. If d(x) > 0, x

belongs to class 1, otherwise it belongs to class 2.

6.1.3 Test Data

Assume two classes of data in input space Rd. Both classes are multinormally dis-
tributed in the d dimensional input space with following parameters.

• class 1:

µ1 = 0 and Σ = Id×d

Sample xi ∼ N(µ1, Σ)

• class 2:

µ2 = 2√
d

1

1
...
1

Sample xi ∼ N(µ2, Σ)

Hence class means have Euclidean distance of 2 regardless of the dimension d. From
properties of normal distributions it follows that each dimension is independently but
identically distributed because the covariance matrix is a diagonal matrix.1Assume

1Zero correlation between two variables in multi normal distribution implies statistical indepen-
dence. A diagonal covariance matrix shows that correlations between all variables are zero.

43

random samples are drawn from probability distribution p(x). According to Bayesian
statistics vector x should be classi�ed to class i if p(class i|x) > p(class j|x) for all
j 6= i. Now

p(class i|x) = p(x|class i)p(class i)
p(x)

where p(class i) means the probability that random sample is drawn from class i. In
this case p(class i) = 0.5 for all i.

Thus sample x should be classi�ed to class 1 if

p(x|class 1) > p(x|class 2)

Multinormal distribution gives

p(x|class 1) = ((2π)ddet(Σ))−0.5 exp(−1
2

(x− µ1)
T Σ−1(x− µ1))

= (2π)−d/2 exp(−1
2
xTx)

p(x|class 2) = ((2π)ddet(Σ))−0.5 exp(−1
2

(x− µ2)
T Σ−1(x− µ2))

= (2π)−d/2 exp(−1
2

(x− µ2)
T (x− µ2))

With little e�ort it results into

p(x|class 1) > p(x|class 2)

⇔ xT(−µ2) + 1
2
µT

2 µ2 > 0

This shows that the optimal decision surface lies halfway between µ1 = 0 and µ2 with
a hyperplane normal µ1− µ2. An analogy can be drawn to 1 dimensional classifying
problem between two distributions:

N1(0, 1) and N2(2, 1)

Expected error of optimal classi�cation is

Pexpectederror = p(class 1)
∫
R\Ω1

p(x|class 1)dx + p(class 2)
∫
R\Ω2

p(x|class 2)dx

where Ωi means the area where sample x should be classi�ed to class i, so that it
is consistent with Bayes classi�cation. Now it's obvious that Ω1 = {x|x < 1} and
Ω2 = {x|x > 1}.
By computing appropriate cumulative distributive functions for these normal distri-
butions the expected error is

Pexpectederror = 0.5 ∗ PN1(x ≥ 1) + 0.5 ∗ PN2(x ≤ 1) = 0.1587

It is not possible to classify any better than this error rate. The SVM should go
as close to this as possible. Figure 6 shows optimal Bayes classi�er result in 2
dimensions.

44

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5
Bayes Optimal Decision Boundary

class +1
class −1
decision line

Figure 6: Optimal Bayes Classi�cation

6.1.4 Simulation

In simulations there were n = 2048 training samples with 1024 samples of each class.
To verify classi�cation accuracy there were v = 2000 veri�cation samples with 1000
samples of each class.

Two types of kernels were tried:

• Radial Basis Function (RBF) kernel:

K(x,y) = exp(−γ ‖x− y‖2)

• Polynomial kernel with k = 1, 2:

K(x,y) = (1 + xTy)k

And the following dimensions: d ∈ {32, 64, 128, 256}.
For each kernel and dimension combination proper SVM parameters were found with
brute force search and manual inspection. These parameters include:

• C, the tolerance parameter which describes how quadratic programming task
tolerates unwanted classi�cation of samples

• γ (gamma), the RBF kernel parameter

Software used for simulation was Cawley's SVM toolbox [4].

Table 2 shows veri�cation errors. Values in brackets are numbers of support vectors.

45

Table 2: Classi�cation Results

Dimensions / Kernel RBF Polynomial k = 1 Polynomial k = 2

32 0.1540 (968) - -
64 0.1540 (947) 0.1586 (772) 0.2630 (1219)
128 0.1645 (835) 0.1580 (818) 0.2745 (1800)
256 - 0.1625 (2048) 0.3075(2036)

6.1.5 Analysis

These numbers show that it is possible to achieve good classifying accuracy for high
dimensional data when lots of support vectors can be used. Error rates should be
compared to the theoretical error rate calculated in Section 6.1.3 (0.1587).

RBF kernel got close to theoretical error rate with 32, 64 and 128 dimensions. The
optimization failed badly with 256 dimensions.

Polynomial kernel with k = 1 scaled up to 256 dimensions having the error rate close
to the theoretical error rate.

Test runs showed that with dimension less than 256, a classifying error less than 17%
was easily achieved. However, in some cases it took a few runs to reach that accuracy.
When more or less optimal kernel parameters were found, training results did not
vary more than a few percent on di�erent runs. The RBF and polynomial (when
k = 1) kernel achieved more or less the same results near to optimal theoretical
accuracy.

What is surprising is that the polynomial kernel with k = 2 did so badly although
in theory it contains the same feature space as kernel with k = 1. The most likely
explanation for the k = 2 case is that it had too much structure for the optimization
algorithm to handle it properly on this data set. Similar phenomena has been ob-
served with other classi�cation problems as well. The SMO algorithm used to solve
the classi�cation problem is only a heuristic to solve the quadratic programming
problem better and more e�ciently. It doesn't guarantee success. In any case clas-
si�cation was successful with the kernel in case k = 1. Both the RBF and the case
k = 2 kernels are more complex than the kernel in case k = 1, so it would be chosen
as the prime candidate for a classi�er. Choosing a simple kernel function seems also
intuitively wise, because the dimension of the feature space is low.

With dimension of 256 or higher problems started to arise. Learning algorithm was
not able to �nish the task in many cases. As the dimension grows it is expected that

46

the decision boundary becomes more complex. The learning algorithm gets increas-
ingly harder tasks, and at some stage it will fail to deliver the desired performance.
With this setup the limit was at around 256 dimensions without further tweaking of
algorithm, data or parameters. With this type of data it is expected that the number
of vectors that describe the decision boundary at the critical zone grows exponen-
tially with respect to the dimension d. The critical zone of multinormal distribution
is a hypersurface of a hypersphere, and hence exponentially related to the dimension
d. Therefore increasing dimension makes the application rapidly infeasible.

Keeping the number of support vectors as low as possible is important when the
dimension grows, otherwise the optimization may fail. Some methods are suggested
here in order to have less support vectors.

1. Better selection of training data. It is possible to have support vectors on the
decision boundary that are useless in the sense that they do not produce better
boundary.

2. Use less training data (related to previous).

3. Find better kernel (and better parameter values).

4. Use better algorithm to solve the SVM problem. Straightforward quadratic
programming with Matlab's quadprog function is not a good choice, and there-
fore Cawley's SVM toolbox was chosen. It is based on Platt's SMO algorithm
[14], which is designed for SVM pattern classi�er tasks. Quadprog in Matlab
is more general purpose tool.

47

6.2 Ionosphere Data

6.2.1 Problem

To assess how useful SVMs are they should be compared to other Neural Network
types. John Hopkin's University Ionosphere Database was used and compared to
independent classi�cation results achieved with various learning machines.

6.2.2 Background

The data investigated is from a radar system in Goose Bay, Labrador. 16 high-
frequency antennas were used to observe structure in the ionosphere. The data set
has �good � and �bad � radar returns, where �good � returns show evidence of structure
in the ionosphere, while �bad � returns do not. Each observation in the data set has
34 attributes and is classi�ed as good or bad. The goal is to predict the class of an
observation from attributes using only a subset of available observations.

The data for the test was acquired from UCI Machine Learning web site [23] from
the FTP archive directory [22]. The ionosphere.names �le on the directory describes
some previous experiments on the data.

6.2.3 Data

Relevant information about the data:

• a binary classi�cation problem

• 351 samples

• input space 34 dimensional real valued data (R34)

As described in the ionosphere database information �le training and veri�cation
data were chosen as follows:

• training data consisted of 200 samples: 50% positive and 50% negative (100
positive and 100 negative)

• veri�cation data consisted of 151 samples: 125 positive and 26 negative

No pre-processing for the data was done to avoid twisting results in favour of SVMs.
A fair comparison was the goal.

48

Table 3: Classi�cation Accuracy Results

Kernel Mean Median Best Worst
RBF 95.5% 95.4% 98.7% 91.4%

Polynomial (2) 93.1% 93.4% 96.7% 88.1%

6.2.4 Simulation

Training and veri�cation data were chosen randomly for each simulation run. Mean,
median, best and the worst results are given for simulation runs.

Following types of kernels were tried:

• Radial Basis Function (RBF) kernel:

K(x,y) = exp(−γ ‖x− y‖2)

• Polynomial kernels (degrees 1, 2, 3, 4 and 5):

K(x,y) = (1 + xTy)k

The simulation was run using Cawley's SVM toolbox [4]. Cn-SVM testing was done
with Matlab's QP solver.

SVM parameters for training were found with brute force techniques.

6.2.5 C-SVM Results

Classi�cation accuracy results are shown in Table 3.

Results from the table show that RBF kernel did somewhat better than polynomial
kernels. Polynomial kernel of degree 2 was chosen to represent all polynomial kernels
because it was the best of all degrees. This is very di�erent than dimensionality test
results in Table 2 where polynomial kernel of degree 2 did very badly with the same
SVM software.

Classi�cation accuracy for positive samples was much higher than for negative sam-
ples. This is consistent with [21], and implies that negative samples have more
complex patterns, because there was equal amount of negative and positive samples
for training.

49

Table 4: Comparative Results

Classi�er Accuracy
Non-Linear Perceptron 92%
Nearest Neighbour 92.1%
Quinlan's C4 94%
SVM 95.4%
Backpropagation MLP 96%
Aha & Kibler: IB3 96.7%

6.2.6 Cn-SVM Results

Similar runs were done with Cn-SVM. Results were comparable, but since the error
rate was already quite low with the common case, it was not possible to improve
results much. However, tuning Ci in favour of another class gave 1.6% median
advantage for classifying positive class correctly compared to the common case, where
all Ci are equal. The mean advantage was only 0.8% for classifying positive class
correctly. When looking at both classes the overall advantage with Ci tuning was
approximately 0.6%.

6.2.7 Discussion

The results were comparable to independent tests using Neural Networks with back-
propagation.

Comparative results are shown in table 4.

Sigillito, Wing, Hutton and Baker [21] investigated the data by using backpropa-
gation and the perceptron training algorithm. They achieved an average accuracy
of 96% with backpropagation. Aha & Kibler used IB3 system to achieve 96.7%
accuracy. These are in average better than the SVMs tried.

The backpropagation MLP had an average accuracy of 96% (precision not known)
which 0.5% higher than RBF kernel average (95.5%). The worst case result for RBF
kernel was rather bad looking (91.4% accuracy). This is probably a failure of SMO
algorithm rather than a failure of C-SVM. However, it may have been only bad luck
when choosing the training data randomly. Choosing a bad set of features can be
disastrous for any classi�er.

The mild success of using Cn-SVM was a positive surprise. Further experiments with

50

Cn-SVM are needed. There are lots of applications where the accuracy of one class
is more important than the accuracy of other classes.

51

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40

frequency

Figure 7: Comparative Frequencies of 39 Classes

6.3 Phoneme Recognition

6.3.1 Problem

Speech Recognition presents great challenges for the machine learning community. It
has been widely studied with many approaches. Nowadays practical solutions are
appearing on the general market, and thus there are commercial interests to pursue
research on this area.

The problem here is induced by an independent party providing experimental data
on a real speech recognition problem. The objective in this thesis was to verify and
improve on their results.

6.3.2 Data

The data given contains 39 classes. Each class has a number of 4 dimensional fea-
ture vectors which are labeled as positive or negative samples (values +1 and −1

respectively). The binary classi�cation machine is given a feature vector and a class
number i (i = 1, 2, ..., 39). The machine should determine whether or not the given
vector is a positive sample of the class i based on the empirical data.

Figure 7 presents amount of samples in each class.

For some classes there were less than 500 samples for training and veri�cation. These
cases were handled di�erently.

Given a sample distribution for any of the 39 classes, there do not seem to be clear
regions of negative or positive samples, but negative and positive samples are mixed
together in the same region of space, at least in the euclidian sense of geometry.
Figures 8, 9 and 10 show class 1 distribution of negative (marked with ×) and
positive (marked with +) samples projected from six di�erent dimension pairs. Only

52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension 1

Di
me

ns
ion

 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension 1

Di
me

ns
ion

 3

Figure 8: Class 1 distribution from 2 di�erent projections: 1 vs. 2 and 1 vs. 3.
Negative samples are marked with ×, and positive samples are marked with +.

400 hundred samples were chosen from the class 1 data. More samples would make
the �gures less informative.

All six di�erent projections show great overlapping in negative and positive sample
regions. This makes accurate classifying hard.

6.3.3 Simulation

An SVM was trained for each class to recognize positive samples. A part of the data
for each class was used to train the associated SVM and the rest of the data was
used to verify accuracy of the binary classi�er.

The goal was to classify each class as well as possible with less than 130 support
vectors. And preferably estimate how many support vectors would be needed to
classify the data as well as possible within the limits of the data.

53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension 1

Di
me

ns
ion

 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension 2

Di
me

ns
ion

 3

Figure 9: Class 1 distribution from 2 di�erent projections: 1 vs. 4 and 2 vs. 3.
Negative samples are marked with ×, and positive samples are marked with +.

54

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension 2

Di
me

ns
ion

 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension 3

Di
me

ns
ion

 4

Figure 10: Class 1 distribution from 2 di�erent projections: 2 vs. 4 and 3 vs. 4.
Negative samples are marked with ×, and positive samples are marked with +.

55

Table 5: Kernels used for Phoneme Recognition

Polynomial kernel K(x,y) = (1 + xTy)d

RBF kernel K(x,y) = e−γ‖x−y‖2

Table 5 shows kernels chosen for SVM training. Polynomial and RBF kernel were
chosen based on tests with many di�erent kernels. Other kernels, like the linear
kernel, were tried but they did not result in any improvement over polynomial and
RBF kernels.

Best estimated kernel parameters were found by brute force techniques. In the case
of polynomial kernels the polynomial degree was in the range of [1, 5] and C in the
range of [0.01, 20]. For RBF kernels γ parameter was in the range of [0.1, 1000] and
C in the range of [0.1, 20]. These ranges were determined by empirical testing.

Requirement was to have less than 130 support vectors for all classes. This require-
ment is tricky, because the number of support vectors resulting from training process
is the number of active boundary constraints placed on the quadratic programming
problem. Generally speaking it is very hard to control the upper bound limit for the
amount of active boundary constraints of the optimization problem.

However, a new method called ν-support vector classi�cation [16] allows to control
the number of support vectors resulting from training. It was tried, but it did not
give signi�cant practical advantage over traditional support vector classi�cation in
this case.

The easy and bad solution to control the number of support vectors is to set the
number of training samples less than or equal to the given upper bound limit for
support vectors.

Our solution was to carry out optimization many times, each time with a di�erent
number of training samples. Given an upper limit for the number of support vectors,
the best case in the series of training was chosen.

6.3.4 Results

Polynomial Kernel

56

120 140 160 180 200 220 240 260 280 300 320

0.25

0.26

120 140 160 180 200 220 240 260 280 300 320

0.26

0.28

0.3

120 140 160 180 200 220 240 260 280 300 320
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

class 1 class 3 class 4

120 140 160 180 200 220 240 260 280 300 320
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

120 140 160 180 200 220 240 260 280 300 320
0.199

0.2

0.201

0.202

0.203

0.204

0.205

0.206

0.207

120 140 160 180 200 220 240 260 280 300 320
0.172

0.174

0.176

0.178

0.18

0.182

0.184

class 8 class 12 class 13

120 140 160 180 200 220 240 260 280 300 320
0.275

0.28

0.285

0.29

0.295

0.3

0.305

120 140 160 180 200 220 240 260 280 300 320
0.23

0.232

0.234

0.236

0.238

0.24

0.242

0.244

0.246

0.248

120 140 160 180 200 220 240 260 280 300 320
0.266

0.268

0.27

0.272

0.274

0.276

class 23 class 25 class 35

Figure 11: Polynomial error rate on various classes

These results re�ect training of all classes, except classes 24 and 39, which had too
few training samples.

Figure 11 shows how classifying error rate decreases when upper limit for support
vectors is increased. Various classes were chosen for this �gure based on result
interest. Class 1 was told be especially important, while class 4 is hard. Other
classes try to represent the task as well as possible.

Error rate of 1 (all wrong) should be interpreted so that for that number of support
vectors regression was not possible because of the limit of support vectors. For
example in class 4 more than 140 support vectors was needed to make any sensible
results.

Figure 12 shows average error of all classes with respect to the support vector upper
limit. No more than the limit amount of support vectors were allowed for classi�ers.

Notice the increase of error rate when support vectors are increased. This is the
result of new classes taken into account. The average was counted over all classes
for a given number of support vectors. However, those classes were discarded for the
average which couldn't be trained for the given number of support vectors. Some
classes were much harder than others and couldn't be trained for less than 190

57

120 140 160 180 200 220 240 260 280 300 320
0.224

0.226

0.228

0.23

0.232

0.234

0.236

0.238

Figure 12: Polynomial average error of all classes with respect to support vector
upper limit

Table 6: Summary of polynomial error averages with support vector limits

n. classes 32 35 37 37
error / n. svs 0.2250 / 130 0.2288 / 140 0.2284 / 190 0.2276 / 320

support vectors. When there are more than 190 support vectors their e�ect can be
seen in the error rate average. The e�ect is increase in error rate because they are
hard.

Table 6 summarizes classifying error. n.classes refers to the number of classes af-
fecting the error, and n.svs is the maximum number of support vectors for the given
error. Two classes (24 and 39) were left out because there was insu�cient training
data for them.

RBF kernel

Figure 13 shows how classifying error rate decreases when upper limit for support
vectors is increased. This �gure is similar to the polynomial kernel case, except that
di�erent classes were interesting.

Figure 14 shows average error for all classes plotted against upper limit of support
vectors.

As with polynomial kernel, the average error �rst increases with respect to support
vectors, since new classes are taken into account. Finally, average error reaches
0.2267 where it is decreasing very slowly.

Table 7 summarizes classifying error. n.classes refers to number of classes a�ecting

58

120 140 160 180 200 220 240 260 280 300 320

0.245

0.25

120 140 160 180 200 220 240 260 280 300 320
0.164

0.166

0.168

0.17

0.172

0.174

0.176

0.178

0.18

0.182

120 140 160 180 200 220 240 260 280 300 320
0.175

0.18

0.185

0.19

class 1 class 13 class 16

120 140 160 180 200 220 240 260 280 300 320
0.275

0.28

0.285

0.29

0.295

0.3

0.305

0.31

120 140 160 180 200 220 240 260 280 300 320
0.226

0.228

0.23

0.232

0.234

0.236

0.238

0.24

0.242

0.244

0.246

120 140 160 180 200 220 240 260 280 300 320
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

class 23 class 25 class 27

Figure 13: RBF error rate of various classes

120 140 160 180 200 220 240 260 280 300 320
0.226

0.228

0.23

0.232

0.234

0.236

Figure 14: RBF average error of all classes with respect to support vector upper
limit

59

Table 7: Summary on RBF error averages with support vector limits

n. classes 35 36 37 37
error / n. svs 0.2319 / 130 0.2332 / 140 0.2277 / 190 0.2267 / 320

Table 8: Kernels functions tested with phoneme recognition

Kernel name Kernel function
Linear K(x,y) = xTy
Polynomial K(x,y) = (1 + xTy)d

RBF K(x,y) = e−γ‖x−y‖2

Hyperbolic Sine K(x,y) = asinh(cxTy + d)

the error, and n.svs is the maximum number of support vectors for the given error.
Two classes (24 and 39) were left out because there was insu�cient training data for
them.

6.3.5 Discussion

Kernels
Many kernels were tried to train the SVM, but no kernel was signi�cantly better
than the others. Table 8 shows kernels tried with the data.

Since there was no signi�cant advantage on any kernel, polynomial and RBF kernels
were chosen for simulations, because they are common and intuitive. What is sur-
prising is that feature spaces of these kernels are very di�erent from each other, but
results were close to each other. For example, polynomial kernel has �nite dimen-
sional feature space whereas RBF kernel has in�nite dimensional. For each kernel
function the number of support vectors was also close to that of the others. It was
also observed that support vectors were often same for di�erent kernels. This is
probably the consequence of feature map from input space to feature space being a
continuous function.

To improve the classifying accuracy di�erent kernels can be used for di�erent classes.
Based on the experience gained it can give 1% overall increase in performance on
this data set.

Complexity

60

Previously presented �gures for class 1 show great overlap for positive and negative
samples. This is true for all the classes. On the other hand, results show that
increasing the number of support vectors beyond certain point doesn't give better
generalization ability. For example, see the �gure of class 16 with RBF kernel. The
error rate does not drop signi�cantly after 180 support vectors, and neither does
average error rate over all classes. Actually, no class does more than a few percents
better with 140 support vectors compared to 320 support vectors. The problem with
SVM optimizing is to select the right vectors from the training set. If the training
set is large it is di�cult. Running many SVM many times on a big set can and will
give better results depending on the chance that right training samples are chosen
as support vectors. This probably means that without clever pre-processing it's not
possible to classify better. But it can also mean that the training machines used
were not as good as they could be.

Optimization Algorithms

2 di�erent SMO training machines [4, 5] were tried to optimize SVMs, and they
gave similar results. Matlab's general purpose quadratic programming function did
not give results nearly as good as SMO training did. SMO training was faster and
consumed less memory. Minos quadratic programming solver was not tried since
its license is too restrictive for continuing academic use, and it would be expensive.
However, many publications have reported using it.

Pre-processing

Principal Component Analysis (PCA) pre-processing did not show any improvement
on these Gaussian-like distributions.

Also, subpartitioning of space into multiple regions (in this case BSP or binary space
partitioning) along principal axes of class distributions, and training di�erent SVM
for each region did not improve results. This would also have increased total number
of support vectors which is against the goal.

Simulations show evidence that more features (dimensions) are needed to improve
results signi�cantly. This is based on the observation that error rate does not improve
when the number of support vectors grows, and on the observation that positive and
negative samples are highly overlapped in the same region of space.

Usually classes distributed like in Figures 8, 9 and 10 can't be classi�ed better
by using clever pre-processing methods, and good solutions existing are unknown.

61

Gaussian like distributions are uncertain, and they will remain so. Measuring features
that are well separated is essential in these cases. Hence no good method for pre-
processing the data set was found.

Generally speech recognition pattern classi�cation tends to be hard since the mea-
sured data is highly context dependent.

Time Complexity

For embedded system applications polynomial kernel classi�cation gives comparable
results to RBF kernel, but is much cheaper in computational resources. The expo-
nential function for RBF kernel is quite costly. Polynomial kernel is also trivial in
implementation, even on machine language level.

62

Part III

Discussion and Conclusions

7 Discussion

7.1 Higher Dimensions

SVM system is de�nitely interesting because the training in itself is invariant of the
input space dimension. This makes it a great tool for challenging pattern recognition
tasks in very high dimensional input spaces. For example, SVM has had applications
with gene sequences [3]. A quote from the publication:

Our experiments show the bene�ts of classifying genes using support
vector machines trained on DNA microarray expression data. We begin
with comparison of SVMs versus four non-SVM methods and show that
SVMs provide superior performance.

...

One signi�cant bene�t o�ered by SVM is scalability. The number of
support vectors selected by the SVM is usually small, even for very large
training sets, and the resulting SVM is consequently an e�cient classi�er.
In this work, training a radial basis SVM using two-thirds of the data
set (1645 examples) takes an average of 89.6 CPU seconds on a DEC
Alpha 4100 workstation running at 466 MHz. This resulting machine
contains only 216 support vectors on average. Thus, classifying a new
gene requires comparisons with only approximately 13.1% of the training
set.

SVM makes it possible to classify in very high dimensional feature spaces, since only
dot-products of the feature space (that can be in�nite dimensional) are used. This
is convenient for image recognition, for example. One sample can be one picture.

7.2 Pattern Recognition

Support Vector Machines have been successfully applied to various pattern recogni-
tion tasks. Some widely discussed applications have been recognition of hand-written

63

digits [19], text categorization [10], gene sequence analyzing [3] and face detection
(spotting human faces from a picture) [13].

Schölkopf [17] and others [18] showed that support vectors of a data set represent
a good subset of information based on which recognition can be successful. This
implies that support vectors characterize the essential information in a given data
set. Furthermore usually only a small subset of training data is support vectors.

Invariance on pattern data can be applied by directly transforming support vectors
instead of transforming all training data, as shown in [20]. As there is signi�cantly
less support vectors as there is other data, this may help adding invariance with less
e�ort.

These and other experiments make SVMs an interesting research and application
area.

7.3 Radial Basis Function Neural Networks

Using RBF kernel with SVM provides a way to achieve similar goals as RBF Neural
Networks. SVM can be applied to do full classi�cation, or it can be used only to
choose data centers for the RBF network. SVM networks have been compared to
RBF networks in [19].

7.4 Support Vector Transformation for Image Compression

During the work on this thesis a new way of using SVMs was brie�y thought and
experimented. One potential application for SVMs would be image compression
using SVM function approximation.

Following pseudo-algorithm describes the process:

1. Convert the image to small blocks.

2. Transform the blocks into Lagrange-multiplier space (Support Vector Trans-
formation).

3. Compress each block with some lossless compression algorithm.

In phase 1 image is divided into �xed size blocks, 16× 16 for example.

64

In phase 2 each block is approximated with an SVM. This is called Support Vector
Transformation, or SVT. This is simply thinking an image block as a function. Pixel
positions in R2 are mapped with the function into pixel brightness values. Support
vector function is used to approximate image block function.

Lagrange multipliers are the result from the quadratic programming task on support
vector function approximation. Since the grid can be set constant for each trans-
formed image block, the only essential information needed to be stored for each block
is all its Lagrange multipliers. These values are said to be in Lagrange-multiplier
space.

In phase 3 Lagrange multipliers are compressed with some lossless compression al-
gorithm. If only a small subset of pixels in blocks are support vectors, meaning that
they have non-zero Lagrange-multipliers, the compression will result in a small size.

Also, SVM function approximation gives the ability to control the maximum error of
the approximative compressed image. For example for 256 colour (8-bit) grayscale
image and 16-bit color display (5 bits for red, 6 bits for green and 5 bits for blue per
pixel), error tolerance could be set to 1/32. This would certainly lose information
from the picture, but for the given display device it wouldn't make a di�erence.
Tuning error tolerance allows in theory to control compression ratio for the image.
Also, the original image can be rounded to suitable accuracy before SVT.

Although this method was tried for lossy image compression there are no results
available at the moment due to optimization problems.

65

8 Conclusions

SVMs have been used successfully in many applications. They have been especially
useful in high dimensional pattern recognition tasks, such as gene sequence analyzing.
Hard problems that MLPs have not been able to resolve may be retried with SVMs
with hope for at least slight improvement in accuracy. However, SVM is still just
another neural network. The most important factor in pattern recognition is always
choosing good features by pre-processing.

The ionosphere data set test showed that it is easy to have competitive results with
SVMs compared to MLPs. Cn-SVM was tested on the ionosphere data, which gave
a slight increase in accuracy. The improvement was not signi�cant, but showed a
way to tune an SVM to �t the application.

Phoneme recognition results showed given data was extremely hard to classify cor-
rectly. Huge overlap in class distributions allowed only 22% percent average accuracy
in classi�cation. Some classes were signi�cantly harder than others. It was suggested
that new features are needed in order to increase classifying accuracy signi�cantly.
Some heuristics were given to improve training with current features, but no signi�-
cant improvement can be expected.

Looking at SVMs from practical and theoretical perspective, it is possible that in
the future SVMs will be as important learning machines as MLPs are presently.
The author believes that in-built SRM methods, such as that featured in SVM, will
overcome MLPs eventually.

66

Part IV

Related Material

References

[1] Bazaraa, M. S. & Shetty, C. M. Nonlinear programming: Theory and Algo-
rithms. John Wiley & Sons, 1979.

[2] Boser, B. E. & Guyon, I. M. & Vapnik V. N. A Training Algorithm for Optimal
Margin Classi�ers. Fifth Annual Workshop on Computational Learning Theory.
ACM Press, Pittsburgh, 1992.

[3] Brown, M. P. S. & Grundy, W. N. & Lin, D. & Cristianini, N. & Sugnet, C. &
Ares, M. Jr. & Haussler, D. Support Vector Machine Classi�cation of Microarray
Gene Expression Data. UCSC-CRL 99-09, Department of Computer Science,
University of California Santa Cruz, Santa Cruz, CA, 1999.

[4] Cawley, G. MATLAB Support Vector Machine Toolbox. http://theoval.sys.
uea.ac.uk/~gcc/svm/toolbox

[5] Chang, C. & Lin, C. LIBSVM - A Library for Support Vector Machines, 2002.
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[6] Cortes, C. & Vapnik, V. N. Support Vector Networks. Machine Learning, 1995.
Volume 20, Number 3. pp. 273-297.

[7] Courant, R. & Hilbert, D. Methods for Mathematical Physics, J. Wiley, New
York, 1953.

[8] Cristianini, N. & Shawe-Taylor, J. An Introduction to Support Vector Machines
(and other kernel-based learning methods), 1st edition. Cambridge University
Press, 2000.

[9] Haykin, S. Neural Networks - A Comprehensive Foundation, 2nd edition. Pren-
tice Hall, 1998.

[10] Joachims, T. Text Categorization with Support Vector Machines: Learning with
Many Relevant Features. Proceedings of ECML-98, 10th European Conference
on Machine Learning, 1997.

67

[11] Kaleva, O. Matemaattinen Optimointi 1. Tampere University of Technology
course material, 2001.

[12] Lin, C. Stopping Criteria of Decomposition Methods for Support Vector Ma-
chines: A Theoretical Justi�cation. Technical report, Department of Computer
Science and Information Engineering, National Taiwan University, Taipei, Tai-
wan, 2001.

[13] Osuna, E. & Freund, R. & Girosi, F. Support Vector Training And Applications.
AIM-1602, 1997.

[14] Platt, J. C. Fast training of support vector machines using sequential minimal
optimization. Advances in Kernel Methods - Support Vector Learning. MIT
Press, 1999. Chapter 12. pp. 185-208.

[15] Rudin, W. Principles of Mathematical Analysis. McGraw-Hill Book Company,
1976.

[16] Schölkopf, B. & Smola, A. & Williamson, R. C. & Bartlett, P. L. New Support
Vector Algorithms. Neural Computation, 2000. Volume 12. pp. 1207-1245.

[17] Schölkopf, B. Support Vector Learning. Doctoral Dissertation. Informatik der
Technischen Universität Berlin, 1997.

[18] Schölkopf, B. & Burges, C. & Vapnik, V. N. Extracting Support Data for a Given
Task. Proceedings, First International Conference on Knowledge Discovery &
Data Mining. AAAI Press, Manlo Park, CA, 1995. pp. 252-257.

[19] Schölkopf, B. & Sung, K. & Burges, C. & Girosi, F. & Niyogi, P. & Poggio, T.
& Vapnik, V. N. Comparing Support Vector Machines with Gaussian Kernels
to Radial Basis Function Classi�ers. IEEE Transactions on Signal Processing,
1997. Volume 45, Number 11. pp. 2758-2765.

[20] Schölkopf, B. & Burges, C. & Vapnik, V. N. Incorporating Invariances in Sup-
port Vector Learning Machines. Arti�cial Neural Networks, ICANN'96, Springer
Lecture Notes in Computer Science, 1996. Volume 1112. pp. 47-52.

[21] Sigillito, V. G. & Wing, S. P. & Hutton, L. V. & Baker, K. B. Classi�cation
of Radar Returns from the Ionosphere Using Neural Networks. Johns Hopkins
APL Technical Digest, 1989. Volume 10. pp. 262-266.

68

[22] The Ionosphere Data, ftp://ftp.ics.uci.edu/pub/
machine-learning-databases/ionosphere/

[23] UCI Machine Learning web site: http://www.ics.uci.edu/~mlearn/
MLRepository.html

[24] Vapnik, V. N. & Golowich, S. E. & Smola, A. Support Vector Method for
Function Approximation, Regression Estimation and Signal Processing, 1996.

[25] Vapnik, V. N. The Nature of Statistical Learning Theory, 2nd edition. Springer
Verlag, 1999.

69

