
1

Update Propagation Practices in Highly

Reusable Open Source Components

Heikki Orsila1, Jaco Geldenhuys2, Anna Ruokonen3, and Imed Hammouda3

1 Department of Computer Systems, Tampere University of Technology,
PO Box 553, FI-33101 Tampere, Finland, heikki.orsila@tut.fi

2 Department of Computer Science, Stellenbosch University, Private Bag X1,
7602 Matieland, South Africa, jaco@cs.sun.ac.za

3 Department of Software Systems, Tampere University of Technology,
PO Box 553, FI-33101 Tampere, Finland, firstname.lastname@tut.fi

Summary. In today’s business and software arena, more and more companies are
adopting open source software. An example of this rising phenomenon is to base
software products on highly reusable open source components. In this scenario, the
evolution of the software product is coupled with the evolution of the open source
component. A common assumption is that component updates are immediately
and regularly propagated to the project. This paper investigates this assumption
empirically by studying update propagation practices in two popular open source
libraries, zlib and FFmpeg. For each library, we analyze various repository sources
with information such as bug reports, revision history, and source code. The results
of the case studies suggest that update propagation is subject to several technical and
non-technical factors including the way the open source library is used, the extent to
which updates are documented, and the degree of community involvement. Based
on these findings, we propose a set of recommendations that would allow better
follow-up of updates and smoother update propagation.

1.1 Introduction

Driven by various business and technical motives such as shorter develop-
ment cycles, lower development costs, improved product quality, and access
to source code, more and more software developers and companies are basing
their software products on open source components (i.e., libraries, platforms,
etc.) [1, 2]. Adopting open source software is sometimes considered a risky
business strategy, mainly because of a lack of trust in community-driven soft-
ware. The main concerns are that many quality attributes such as reliability,
security, and safety are hidden properties that have to be carefully checked,
and that fixing software defects pertaining to such quality attributes can never
be guaranteed. Furthermore, empirical research shows that many advocated
hypotheses made about open source software are not always true [3].



2 Heikki Orsila, Jaco Geldenhuys, Anna Ruokonen, and Imed Hammouda

A basic practice to overcome part of the challenges sketched above is to
regularly update to newer versions of the used open source components, which
leads to faster incorporation of community contributions such as bug fixes and
new component features. Thus, in the case of highly reusable components,
one expects the following basic usage pattern: whenever a new version of a
component is released, users of that component immediately switch to the
new release. At the other end, one might hypothesize that most practices will
eventually deviate from this basic principle due to various influential factors.

Based on the observations above, our research problem can be formulated
as analyzing update propagation practices in the case of highly reusable open
source components. In particular, we are interested in issues like the frequency
of update propagations, the kind of interactions between the components and
the projects using them, and the influential factors shaping these interactions.
Our goal is ultimately to identify a set of guidelines that would promote better
follow-up of updates and smoother update propagation. The good news is
that open source projects come with a rich repository of models, source code,
resource files, defect reports, change logs, etc., which makes it possible to mine
such information.

To investigate our research problem, we focused on two popular software
libraries: FFmpeg [5] and zlib [4]. We carried out our study empirically by an-
alyzing the software repositories of these two libraries for update propagation.
The updates concern bug fixes or new features contributed by the community.
As expected, mining the information needed was not an easy task as we had
to consider various repository sources such as bug reports, revision history
and the source code itself. The results of the study show that practices vary
from one case to another. In most of the cases, however, we were able to
find answers to our research questions and make “educated guesses” for the
reasons of the results. Our findings suggest that there are several technical
and non-technical factors that have a direct effect on update propagation.
These include the way the open source library is being used, the extent of
documenting updates, and the degree of involvement in the community.

The rest of the paper is organized as follows. Section 1.2 presents the
background of this work and discusses related studies. Sections 1.3 and 1.4
introduce the case studies and empirically explore our research questions. In
Section 1.5 we present a set of recommendations supporting update propaga-
tion, and in Section 1.6 we conclude the paper.

1.2 Background

The repository sources most relevant to our empirical study are bug reports
and revision logs. Most open source projects include an open bug repository,
to which users of the software have full access. It is used to report and track
bugs and potential enhancements. An open bug repository might potentially
increase the number of problems identified in the system and enable more



1 Update Propagation in Highly Reusable Open Source Components 3

efficient fixing of problems. Bug reporting, resolving bug reports, and improv-
ing bug management have been discussed before [6, 7]. Although many open
source software developers interact with the bug repository on a regular basis,
there is little data available to characterize their interactions. Similarly, revi-
sion logs are useful sources in the sense that they record the evolution of an
open source project, but they often come with challenges such as insufficient
and unreliable data.

In open source projects, code contribution and bug fixing can be regarded
as alternating phases in a continuous, cyclical process. Maintainability has
been identified as the core quality issue in open source development [7]: devel-
oping an OSS system implies a series of frequent maintenance efforts mainly
for debugging existing functionality and adding new features to the system.
Maintenance activities can be categorized into four classes: adaptive (e.g.,
supporting new platforms), corrective (e.g., fixing bugs), perfective (e.g., im-
proving quality attributes), and preventive (e.g., code cleanup and refactor-
ing) [8]. According to this view, open source maintenance is mainly adaptive
and corrective. However, in this paper we are more interested in how rapidly
the user community reacts to maintenance updates, and in what motivates
their reactions.

Reuse of open source software has been the subject of many studies.
For example, Capiluppi et al. propose guidelines to identify highly reusable
components and to improve the reusability of open source components [9].
Large-scale reuse involving open source repositories has also been studied by
Mockus [10]. He identifies widely reused code blocks, typically a component,
and common patterns of reuse. In this empircal study the focus is mainly
on the immediacy, frequency, usage patterns, and underlying motivation of
updates.

In the case of open source components, reuse can be divided (roughly) into
the following practices:

A. Always part of source: the component is incorporated during development
time (e.g., the Linux kernel)

B. Added when released: the component is incorporated during release time
(e.g., xvidcap project)

C. User must provide source: the component source code is incorporated by
the user when the project is recompiled (e.g., eCos tool chain [11])

D. User must provide binary: the component binary is provided by the user
when the project is linked (e.g., OpenSSH [12])

In special cases, the reuse may even be a combination of two or more of the
above (e.g., AbiWord [13]). Reuse of binary distribution makes use of either
static or dynamic linking. In static linking the component binary is included
in a local, stand-alone copy of the project at compile-time. Dynamic linking
means that the component binary is loaded at runtime, and can therefore be
updated independently of the project that is using it. In this respect dynamic
linking is not relevant to the questions addressed in this paper.



4 Heikki Orsila, Jaco Geldenhuys, Anna Ruokonen, and Imed Hammouda

Our research methodology can be summarized in five main steps: we 1)
formulate the research questions, 2) select suitable component candidates 3)
extract the relevant data by exploring the component repositories, 4) analyze
the data with respect to the questions raised, and 5) make recommendations.
The research questions we explore include the following:

• What reuse mechanisms are adopted most often when reusing open source
components?

• What kind of update propagation patterns are practiced?
• How fast/often does the user community react to new releases of highly

reusable open source components?
• What technical and non-technical criteria influence the community re-

sponse (e.g., reuse mechanism, product domain, product development
phase, etc.)?

• What best practices can be identified to promote better follow-up of up-
dates and smoother update propagation?

As candidate components, we have selected two highly reusable libraries,
zlib and FFmpeg. The former is a lossless compression library which imple-
ments a standard coding system [14, 15, 16]; it is used in many file formats and
protocols, and in many popular systems such as Linux and Python. The latter
is a collection of utilities for processing audio and video files and streams. It
includes tools to play and record different media, and a server for distributing
media over the internet, for example, for live broadcasts. The library has been
incorporated in more than 90 projects.

1.3 Case Study: zlib

1.3.1 Analysis

The zlib source code is included in numerous projects. We looked at three
security-related bugs that were found in the zlib source code, and analyzed
the time it took the bug fix to propagate into 8 projects: AbiWord, BZFlag,
CVS, Linux, ppp, Python, RPM, and zlib.

There are only two core authors for the zlib project, but 42 authors
have contributed code to the library. Of the 628 documented changes, 89%
come from the top 5 out of 42 contributors. This information comes from the
credits in the library’s ChangeLog file. We studied the latest zlib, version
1.2.3 released on 2005-07-18. The Changelog entries are dated 1995-04-11 to
2005-07-18, a period of approximately 10 years.

We investigated fixes for the following bugs:

1. A double free bug reported on 2002-03-11
2. A DoS/crash bug reported on 2004-08-25
3. A buffer overrun/DoS/crash bug reported on 2005-06-30



1 Update Propagation in Highly Reusable Open Source Components 5

For each of the projects that use zlib, the bug status was classified as
follows:

• Does not apply: The bug doesn’t have an effect on the project, because
the vulnerable code never existed inside the project (e.g., Linux kernel)

• Known: The time (in days) to fix a bug is known from version history
(e.g., CVS)

• Not fixed: The bug is still not fixed (e.g., AbiWord for Windows)
• Unknown: Status of the fix is unknown due to unavailability of version

history (e.g., Python)

The results are shown in Table 1.1. The mean and median times for fix-
ing a bug, computed over all the projects in the table, are 97 and 19 days,
respectively.

Table 1.1. Number of days to fix 3 different zlib bugs

Project Bug 1 Bug 2 Bug 3

AbiWord 1 Not fixed Not fixed
BZFlag Does not apply Does not apply 583
CVS 1 63 87
Linux 8 Does not apply Does not apply
ppp 21 Does not apply Does not apply
Python Unknown Unknown 90
RPM 432 25 16
zlib 0 15 11

Min 0 15 11
Mean 77 34 157
Median 5 25 87
Max 432 63 583

1.3.2 Discussion

We noticed two issues from the zlib results:

Bug Fix Delay Varies Significantly

The time to fix bugs varies a lot from project to project, which means that
the median and mean times to fix bugs are far apart. In one case (AbiWord)
the project is still vulnerable for bugs that were discovered years ago.

We did not find any project, apart from one operating system distributor,
with an explicit system for checking for updates in other projects. Such an
automatic mechanism is a necessity for scalable code reuse. Possible reasons
for this lapse may be weak virtual organization, lack of explicit task lists, and
lack of command hierarchy. Another possible reason that stabilized products



6 Heikki Orsila, Jaco Geldenhuys, Anna Ruokonen, and Imed Hammouda

fail to incorporate zlib updates is that their maintainers do not have the
resources for testing a new zlib version and/or backporting necessary fixes.

Investigated projects seem to fall into three update propagation patterns:
random updates, negligence, and systematic. We address these issues further
in the guidelines in Section 1.5.

Microsoft Windows Programs Are Biased Towards Binary And Source
Duplication

Table 1.2 shows each project and its reuse category. Almost all GNU/Linux
projects use zlib as a dynamic library, which can be updated through a com-
mon packet manager for all applications. Unfortunately the Microsoft Win-
dows operating system lacks a common packet manager for non-Microsoft
products. This suggests that there could be a general bias in Microsoft Win-
dows to use source duplication (category A and B) instead of dynamic libraries
(category D), because it is so much harder to update those systems.

Table 1.2. Projects and their reuse categories

Project Reuse categories

AbiWord A, D
BZFlag A, D
CVS A, D
Linux A
ppp A
Python A
RPM A, D
zlib A

For example, AbiWord and Python 1.6-2.4 can be run on both GNU/Linux
and Microsoft Windows, but the Windows versions are more vulnerable to
bugs because the GNU/Linux versions use a dynamic library. Python 2.5 and
later are in category A, and therefore they are vulnerable on both GNU/Linux
and Microsoft Windows. Bug 3 is one manifestation of this problem.

1.4 Case Study: FFmpeg

1.4.1 Analysis

FFmpeg has a core library called libavcodec that contains encoders and de-
coders for a wide range of multimedia formats. The FFmpeg project web page
lists some 90 other projects that incorporate parts or all of FFmpeg. We fo-
cused our attention on libavcodec and, in particular, the libary interface
specification in the header file avcodec.h.



1 Update Propagation in Highly Reusable Open Source Components 7

Material related to this case study is available at [17].
Figure 1.1 shows the development of avcodec.h. Each dot represents one

change, and its color identifies the responsible user. During the period 2001-07
to 2007-06, 38 different users made a total of 617 changes and the file grew
from 177 (5.1 kbytes) to 2940 (90 kbytes) lines of code. Only the most active
users are listed in the figure.

10

20

30

40

50

60

70

80

90

F
il
e

si
ze

(1
0
0
0

b
y
te

s)

Jul2002 2003 2004 2005 2006 2007Jun

bbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbb
bbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bmichael
balex
btakis
brtognimp
bbcoudurier
bglantau
bkostya

bmru
baurel
bdiego
bbenoit
bbellard
btmmm
bmelanson

bpulento
bromansh
bkabi
bnickols k
bmichaelni

Fig. 1.1. The evolution of avcodec.h

As a first approximation we studied the revision history of avcodec.h in
the following projects:

• avidemux is a video editing suite
• avifile is a multimedia player for Linux systems
• ffdshow is a media decoder and encoder for Microsoft Windows systems
• gstreamer is a server for streaming audio/video over the internet
• mythtv is a software-based personal video recorder for Linux and Mac OS X
• xbmc is a multimedia player for Microsoft’s Xbox

Unfortunately, it soon became clear that the revision history by itself is
not sufficient. Log entries such as “libavcodec resync” do not identify the
exact revision of libavcodec that was used for the update. Even when such
information is given, there is no guarantee that the comment is accurate,
and in several cases it proved not to be. To overcome this problem, different
revisions of avcodec.h were downloaded and compared one by one to find
matching versions. Together with the information in the revision logs, this
produced the kind of information shown in Figure 1.2. The upper and lower
horizontal lines represent the avifile and FFmpeg projects, respectively. Ar-
rows indicate updates from the latter to the former on the dates shown above
and below the project lines, and the small vertical lines on the FFmpeg line
indicate different revisions of avcodec.h.



8 Heikki Orsila, Jaco Geldenhuys, Anna Ruokonen, and Imed Hammouda

avifile

ffmpeg

2
0
0
7
-0

5
-1

0
2
0
0
7
-0

5
-1

0

2
0
0
7
-0

3
-1

5
2
0
0
7
-0

3
-1

5

2
0
0
7
-0

2
-2

7
2
0
0
7
-0

2
-2

8

2
0
0
7
-0

2
-1

1
2
0
0
7
-0

2
-1

3

2
0
0
7
-0

2
-0

6
2
0
0
7
-0

2
-1

0

2
0
0
6
-1

2
-2

4

2
0
0
7
-0

1
-0

6

2
0
0
6
-1

1
-1

0
2
0
0
6
-1

1
-1

5

2
0
0
6
-1

0
-2

6
2
0
0
6
-1

0
-2

7
2
0
0
6
-1

0
-1

6
2
0
0
6
-1

0
-2

0

2
0
0
6
-1

0
-0

7
2
0
0
6
-1

0
-0

9

Fig. 1.2. The 10 most recent updates (from 2006-10-09 to 2007-05-10) of avcodec.h
in avifile

Table 1.3. Summary of update data

Nr. of Delay (days)
Project Period updates Min Max Ave

avidemux 2004-01–2007-01 10 1.8 26.8 5.7
avifile 2002-05–2007-05 163 <hour 14.6 2.1
gstreamer 2004-03–2006-09 9 1.1 18.0 5.2
mythtv 2002-08–2007-06 82 <hour 60.6 3.7
xbmc 2004-04–2007-04 7 2.9 118.7 29.8

The results are summarized in Table 1.3. In the three rightmost columns,
Delay refers to the number of elapsed days between the production of a revi-
sion and its use in an update, in other words, how “fresh” it is. In many cases,
the update delay is less than a week. avifile and mythtvwere clearly updated
much more frequently than the others, even when the longer time frames are
taken into account. Still, on at least one occasion the mythtv project was not
updated for about two months. One fact not shown in this table is that these
two projects are updated less and less frequently over time, possibly because
libavcodec has reached a level of stability where fewer bugs are reported.

1.4.2 Discussion

We noticed some issues from the FFmpeg results:

Shared Interests, Features and Developers

New features in the avifile project were introduced first in child projects
and later introduced into the parent project. This is the result of common de-
velopers and interests between the projects. For example, one active developer
is a member of both the FFmpeg and avifile projects.



1 Update Propagation in Highly Reusable Open Source Components 9

Feature propagation to and from the parent project supports the theory
of OSS development model. If new features are only added in the central
project, it would cast serious doubt on the OSS model, and distributed models
in general. Bugs are often fixed through inter-project co-operation by users
and developers directly communicating with each other. We argue that code
reuse in some OSS projects comes close to sharing developers, not just sharing
features (code).

Update Propagation Entails Significant Effort

In the case of mythtv the mismatches were more numerous and more sub-
stantial. The requirements of this software include specialized features such
as closed captioning and support for multilingual soundtracks, which are not
provided by the libavcodec library. In at least one case, a feature was first
introduced in the mythtv project and only later in FFmpeg, but, as far as we
can tell, the later implementation was not derived from the earlier one. In
all events, mythtv is one example of an unforeseen pattern: code reuse takes
place, but the code undergoes non-trivial modifications within the new set-
ting, requiring significant effort in update propagation. This happens either
because the new setting is significantly different from the original, or because
there are new feature requirements.

On Update Propagation Patterns

All the projects mentioned above include a complete copy of the libavcodec

code and fall into category A. Sometimes, as in the case of mythtv, this is
unavoidable if the code needs modification before use.

One example of a project that belongs to category B is xvidcap, a screen
capture program for recording user activity, to create video tutorials and other
material. Whenever this project is released, the developers include the latest
version of libavcodec. This may appear safer, since the library is not as
tightly integrated in the source code. However, category A reuse allows users
to download a more recent, albeit less stable, development version of the
software. In theory, users could themselves replace the copy of libavcodec in
xvidcap with the latest release in order incorporate the latest bug fixes, but
it is not realistic that this would occur widely in practice.

In the case of ffdshow, we failed to trace updates accurately, because the
project modifies avcodec.h too dramatically, but we observed that at least
some bugs were reported back to the FFmpeg project.

Comparison of zlib and FFmpeg

Bug fix delays in the zlib project were relatively long compared to those in
FFmpeg. The main difference in these projects is that functionality of zlib

is fixed; it just implements a specific functionality. In constrast, new features
are continuously added to FFmpeg. This suggests that that shared interests in
developing the same features, as well as shared developers, can decrease the
update propagation delay.



10 Heikki Orsila, Jaco Geldenhuys, Anna Ruokonen, and Imed Hammouda

1.5 Guidelines for Managing Bug Fixes

Based on our experience of tracking bug fixes we argue for some guidelines
for managing bug fixing inside and between open source projects.

1.5.1 Avoid Source and Binary Code Duplication

Use dynamic libraries instead of static libraries or source code inclusion.
Source code inclusion means that reused code has to be constantly maintained
and monitored. In general, dynamic libraries avoid redundant information in
the system. This is by far the best practice for code reuse, because it also
allows other parties, mostly operating system distributors, to help you.

1.5.2 Document Important Changes in Version Control History

Maintain a special SECURITY file that lists the specific corrective maintenance
operations in version control history that fix a security issue. This helps op-
erating system maintainers and other interested parties to track important
updates. Also, backporting the security fixes to older and stable versions is
easier when the specific commit is known. This is important for production
systems that operate for several years. This approach is not limited to security
fixes. It can also be used to document other bugs, properties, or interesting
factors.

1.5.3 Tag Important Changes in Version Control History

A special tag (e.g., “[SECURITY]”) should be added to each commit message
that fixes a security issue in the version control system. This makes searching
for security fixes easier.

1.5.4 Maintain a Global Notification System for Changes

Fast updates between projects is important if new features are needed or se-
curity matters. Achieving this demands easy updates. We propose that each
project create a global notification system for important changes (e.g., a mail-
ing list), that alerts interested parties of specific fixes and features. The system
should not flood interested parties about small changes, only the important
ones. Also, notifications should be archived so that users can access older
changes.



1 Update Propagation in Highly Reusable Open Source Components 11

1.5.5 Facilitate Follow-up of Component Updates

To address the issue of weak command hierarchy, we propose that each project
creates a list of reused software components, annotated with a timestamp and
an unique identifier (such as the version number or a commit identifier) about
the last update.

Also, if possible, a responsible person should be assigned to particpate
actively in the project community of the reused component. This will decrease
update propagation time and may help to promote a project’s interests. This
happens when companies contribute to projects like Linux, gcc and Samba.

1.5.6 Write a Procedure for the Update Process

Virtual organization and distributed development means that any developer
should be able to replace another developer — at least in theory — but
unfortunately experience and knowledge is not easily transfered. A detailed
set of guidelines to raise awareness about maintenance operations should help
new developers to be more productive. Such guidelines could, for example,
spell out how to cross-check for important updates, such as security fixes.

Guidelines should cover issues relating to project maintenance and re-
leases, including managing updates (notification of changes to and from other
projects), managing new releases, and the preferred communication style be-
tween developers (IRC channels, mailing lists, etc.).

1.6 Conclusions

Many software companies and software developers are adopting open source
components. These components often undergo constant maintenance actions.
This paper studied the causes of maintenance in open source components
and what controls the user community reaction to maintenance updates. We
studied update propagation delay. In particular, we analyzed the effect of the
following factors on update propagation delay: reuse category, documentation
of changes, and the update process itself.

To find answers we explored updates and bug fix delays in the zlib and
FFmpeg software repositories. We found that update propagation delay varies
significantly among projects. Based on this information, we formulated the
following guidelines for reusing open source components:

1. Avoid source and binary code duplication.
2. Document important changes in version control history.
3. Tag important changes in version control history.
4. Maintain a global notification system for changes.
5. Facilitate follow-up of component updates.
6. Write a procedure for update process.



12 Heikki Orsila, Jaco Geldenhuys, Anna Ruokonen, and Imed Hammouda

Since we have only studied update propagation in the context of two li-
braries, we cannot claim that the results are generalizable. For further inves-
tigation, more case studies should be considered. In our case studies we used
custom-built scripts and analysis by hand; a full record of our experiments is
available at the website [17]. Although the details are specific to the libraries
we looked at, the approach is applicable to other cases, and scalable to larger
projects. If the guidelines we have suggested are followed, our approach would
be even easier and faster. In order to validate the relevance of the proposed
guidelines, a questionnaire to the open source community could be planned
and carried out.

References

1. Bolado, M., Castillo, J., Posadas, H., Sanchez, P., Villar, E., Sanchez, C., Blasco,
P., Fouren, H.: Using open source cores in real applications. In: DCIS 2003.
(2003), 683–688

2. Madanmoha, T., Deapos, R.: Open source reuse in commercial firms. Comm.
ACM (2004), 62–69

3. Paulson, J.W., Succi, G., Eberlein, A.: An empirical study of open-source and
closed-source software products. IEEE Trans. on Softw. Eng. (2004), 246–256

4. zlib web site: http://zlib.net
5. FFmpeg web site: http://ffmpeg.mplayerhq.hu
6. Anvik, J., Hiew, L., Murphy, G.C.: Coping with an open bug repository. In:

eclipse ’05: Proceedings of the 2005 OOPSLA workshop on Eclipse technology
eXchange, ACM Press (2005), 35–39

7. Samoladas, I., Stamelos, I., Angelis, L., Oikonomou, A.: Open source software
development should strive for even greater code maintainability. Comm. ACM
(2004), 83–87

8. Lientz, B.P., Swanson, E.B.: Software Maintenance Management. Addison-
Wesley (1980)

9. Capiluppi, A., Boldyreff, C.: Coupling patterns in the effective reuse of open
source software. In Proceedings of the 1st International Workshop on Emerg-
ing Trends in FLOSS Research and Development (FLOSS’07), IEEE Computer
Society (2007)

10. Mockus, A.: Large-scale code reuse in open source software. In Proceedings of
the 1st International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS’07), IEEE Computer Society (2007)

11. eCos tool chain: http://ecos.sourceware.org/build-toolchain.html
12. OpenSSH web site: http://www.openssh.com
13. AbiWord web site: http://www.abisource.com
14. Internet Society RFC 1950: ZLIB Compressed Data Format Specification version

3.3, http://tools.ietf.org/html/rfc1950
15. Internet Society RFC 1951: DEFLATE Compressed Data Format Specification

version 1.3 http://tools.ietf.org/html/rfc1951
16. Internet Society RFC 1952: GZIP File Format Specification version 4.3

http://tools.ietf.org/html/rfc1952
17. http://www.iki.fi/shd/publications/oss2008/, and a full dump of the web

site: http://www.iki.fi/shd/publications/oss2008.tar.gz


