
Trust Issues in Open Source Software Development

Heikki Orsila
Tampere University of
Technology, Finland

heikki.orsila@tut.fi

Jaco Geldenhuys
Stellenbosch University,

South Africa
jaco@cs.sun.ac.za

Anna Ruokonen
Tampere University of
Technology, Finland

anna.ruokonen@tut.fi

Imed Hammouda
Tampere University of
Technology, Finland

imed.hammouda@tut.fi

ABSTRACT
Open source software and the associated development model
holds great promise, but the issue of trust is a major chal-
lenge. This applies to companies wishing to adopt the open
source model but also within open source projects. We in-
vestigate this issue by data mining open source repositories
to study two related phenomena: update propagation and
distributed version control.

1. INTRODUCTION
Companies can leverage open source development in many
ways. The internal use of open source tools is widespread
and largely uncontroversial. Some companies base products
on highly reusable open source components, while still oth-
ers adopt the open source model wholesale and make their
profits from additional services and customized solutions.
The open source model is appealing because it offers the
promise of reduced costs and the potential to achieve signif-
icant market penetration. However, adopting the full model
is seen as risky due to a lack of trust in community-driven
software. The main concerns are that thoroughly checking
quality attributes (reliability, security, safety, etc.) is diffi-
cult, and that fixing defects may incur substantial effort or
may even be impossible. Moreover, empirical research shows
that many claims about open source turn out to be false [2].

Open source development also presents unique opportuni-
ties and challenges to researchers. Propriety development is
opaque and case studies are expensive and intrusive, whereas
open source development produces a considerable amount
of publicly available data. However, this data is often in-
complete and not as “rich” as the documentation generated
with traditional SE processes. Due to the distributed nature
of open source, data accuracy can be difficult to establish,
and, because the management of open source projects is
non-existent or widely distributed, it is not easy to conduct
controlled experiments.

Our research focuses on the issue of trust , both between an
open source project and its users, and also within the project
itself. In this paper, we consider two aspects of this issue.
First, we look at update propagation (i.e., how bug fixes
and other changes move from project to project); Section 2
describes previously published research [4] that investigates
update practices for two reusable components. Second, Sec-
tion 3 discusses ongoing work to extract information about
underlying social networks from open source project reposi-
tories, specifically from distributed version control systems.

2. UPDATE PROPAGATION
In the case of highly reusable components, one expects the
following basic usage pattern: whenever a new version of
a component is released, users immediately download and
switch to the new release. Unfortunately, this is rare.

In related work, Capiluppi and Boldyreff provided guide-
lines to identify and improve highly reusable components [1].
Large-scale reuse involving open source repositories has also
been studied by Mockus [3], who identified widely reused
code blocks, typically whole components, and common reuse
patterns. Reuse in open source can be categorized as follows:

α the component source code is incorporated in the pro-
ject during development (e.g., Linux kernel),

β the component source code is added when the project
is released (e.g., xvidcap project),

γ users provide the component source code and recom-
pile the project themselves (e.g., eCos tool chain),

δ users provide the component binary (e.g., OpenSSH),

• some combination of above (e.g., AbiWord).

Binary reuse (category δ) uses either static or dynamic link-
ing. For static linking a local, stand-alone copy of the library
routines is produced at compile-time, while dynamic linking
means that library subroutines are loaded at runtime.

The research questions addressed, include the following:

• What reuse mechanisms are commonest?



• What update propagation patterns are commonest?

• How fast/often do users react to new releases of reused
components?

• What technical and non-technical criteria influence the
community response (e.g., reuse mechanism, product
domain, and product development phase)?

• What best practices promote update propagation?

Our research methodology comprises five main steps: (1) for-
mulate research questions, (2) pick good components candi-
dates, (3) extract data by exploring the software repositories
of the components, (4) analyze the data with respect to the
questions raised, and (5) make recommendations.

We have selected two highly reusable libraries, zlib and
FFmpeg. The software repository of the projects were down-
loaded, but mining the information is not an easy task and
we considered various sources — such as bug reports, mail-
ing lists, IRC conversations, and source code comments — in
addition to the revision history. Many open source projects
use a public bug tracking system to report and track defects
and potential enhancements. Such a system can increase the
number of identified problems and enable more efficient cor-
rections. While developers frequently interact with the bug
tracking system, little data to characterize their interactions
is available. Similarly, revision logs are useful sources in the
sense that they record the evolution of a project, but they
also present challenges such as incomplete/unreliable data.

2.1 zlib
zlib [7] is a lossless compression library used for many
file formats and protocols, and included directly in several
projects. We investigated three security-related zlib bugs
and their fixes, and analyzed the time taken to propagate
the fixes to eight other projects: AbiWord, BZFlag, CVS, the
Linux kernel, ppp, Python, RPM, and mirrors of zlib itself.
The project has two core authors and 42 further contribu-
tors. We studied zlib version 1.2.3 released on 2005-07-18.
The information comes from the ChangeLog file; log entries
ranged from 1995-04-11 to 2005-07-18, a period of about
10 years. There were 628 documented changes, with 89%
coming from the top five of the 42 contributors.

We looked at the following bugs: (1) a double free bug (re-
ported 2002-03-11), (2) a DoS/crash bug (reported 2004-08-
25), and (3) buffer overrun/DoS/crash bug (reported 2005-
06-30). The time delay between bug report and bug fix is
shown in Table 1. The mean and median times in days,
computed over all projects in the table, are 97 and 19 days,
respectively. From this we draw the following conclusions:

Bug Fix Delay Varies Significantly The time to fix
bugs varies significant from project to project, as the dis-
tribution of the median and mean times show. In the case
of Python, the project is still vulnerable to bugs that were
discovered years ago. Except for Linux, none of the projects
has an explicit system for checking for updates in reused
projects. This is clearly a precondition for scalable code
reuse. This omission is probably due to weaknesses in the
project organization, a lack of explicit task lists, and a weak

Table 1: Number of days to fix three differ-
ent zlib bugs. D=does not apply, N=not fixed,
U=unknown.

Reuse
Project Bug 1 Bug 2 Bug 3 category
AbiWord 1 N N α, δ

BZFlag D D 583 α, δ

CVS 1 63 87 α, δ

Linux 8 D D α

ppp 21 D D α

Python U U 90 α

RPM 432 25 16 α, δ

zlib 0 15 11 α

Min 0 15 11
Median 5 25 87
Mean 77 34 157
Max 432 63 583

command hierarchy. Technical problems may also play a
role: current maintainers of stabilized products may fail to
update zlib because they do not have the resources for
testing new versions and backporting the necessary fixes.
Broadly speaking, the update propagation patterns of these
projects can be classified as either systematic, negligent, or
random.

Microsoft Windows Programs are Biased Towards
Binary and Source Duplication Python 1.6–2.4 and
AbiWord run on both GNU/Linux and Microsoft Windows,
but only the latter are vulnerable to the three bugs. Python
version 2.5 and later are in category α, so both Linux and
Windows are vulnerable. The last column of Table 1 shows
the reuse categories for each project. Almost all Linux pro-
grams use zlib as a dynamic library, which can be updated
using a system-wide package manager. Windows lacks such
a manager for non-Microsoft products; consequently there
is a general bias in Windows to use source duplication (cat-
egories α and β) instead of dynamic libraries (category δ).

2.2 FFmpeg
FFmpeg [5] is a collection of utilities for processing audio and
video files and streams, tools to play and record different
media, and a server for distributing media over the inter-
net, for example, for live broadcasts. The library is used in
more than 90 projects. We focused on one component of
FFmpeg, a library called libavcodec, for encoding and de-
coding a wide range of multimedia formats. We studied the
revision history of the library header file avcodec.h in the
following projects: avidemux, avifile, ffdshow, gstreamer,
mythtv, and xbmc. It soon became clear that this history by
itself is insufficient. Many log entries were imprecise (e.g.,
“libavcodec resync”, without any version information), or
simply wrong. We addressed this by downloading all orig-
inal and reused versions of avcodec.h comparing the files
one-by-one to find matching versions. This produced the
kind of information shown in Figure 1. The upper and lower
horizontal lines represent the avifile and FFmpeg projects,
respectively. Arrows indicate updates from the latter to the
former on the dates shown, and small vertical lines at the
bottom indicate different revisions of avcodec.h.



avifile

ffmpeg

1
0

M
ay

0
7

1
0

M
ay

0
7

1
5

M
a
r

0
7

1
5

M
a
r

0
7

2
7

F
eb

0
7

2
8

F
eb

0
7

1
1

F
eb

0
7

1
3

F
eb

0
7

6
F
eb

0
7

1
0

F
eb

0
7

2
4

D
ec

0
6

6
J
a
n

0
7

1
0

N
ov

0
6

1
5

N
ov

0
6

2
6

O
ct

0
6

2
7

O
ct

0
6

1
6

O
ct

0
6

2
0

O
ct

0
6

7
O

ct
0
6

9
O

ct
0
6

Figure 1: The 10 most recent updates (from 2006-
10-09 to 2007-05-10) of avcodec.h in avifile

Table 2 summarizes the results. The last three columns
show the number of elapsed days between the release of a
revision, and its use in an update. Often this is less than a
week. The avifile and mythtv projects were updated much
more frequently than the others, even when their longer time
frames are taken into account. Still, at least once the mythtv
project was not updated for about two months. What is not
shown in the table is that the projects are updated less and
less frequently as time passes, possibly because libavcodec

has reached a level of stability where fewer bugs are reported.
These results lead us to the following conclusions:

Sharing Interests, Features and Developers Some
features were introduced first in child projects and later into
the root project (libavcodec). The explanation is that the
projects have shared developers and a shared focus. Fea-
ture propagation to and from the root project supports the
general model of open source development. If new features
appeared in the root project only, it would cast serious doubt
on the open source model, and distributed models in general.

Update Propagation can Mean Significant Effort In
the case of mythtv, mismatches in avcodec.h were numer-
ous and substantial because of software requires specialized
features (e.g., closed captioning, support for multilingual
soundtracks) not provided by libavcodec. At least once
a feature was first introduced in mythtv and only later in
FFmpeg. As far as we can tell, the later implementation was
not derived from the earlier. Thus mythtv is one example of
an unforeseen pattern: code reuse takes place, but the code
undergoes non-trivial modifications within the new setting,
and update propagation therefore entails significant effort.

Update Propagation Patterns All the above projects
include a complete copy of the libavcodec code and fall
into category α. One example of a project in category β is
xvidcap, a screen capture program that records user activ-
ity for video tutorials and other material. Whenever this
project is released, the developers include the latest version
of libavcodec. This may appear safer because the library
is not as tightly integrated, but category α reuse always in-
cludes the option of downloading a more recent, albeit less
stable, development version of the reused component.

Table 2: Summary of libavcodec updates

Nr. of Delay (days)
Project Period updates Min Max Ave
avidemux 2004-01−2007-01 10 1.8 26.8 5.7
avifile 2002-05−2007-05 163 <hour 14.6 2.1
gstreamer 2004-03−2006-09 9 1.1 18.0 5.2
mythtv 2002-08−2007-06 82 <hour 60.6 3.7
xbmc 2004-04−2007-04 7 2.9 118.7 29.8

Comparison Between zlib and FFmpeg Cases Bug
fix delays in the zlib project were relatively long compared
to the FFmpeg project. The crucial difference is that the
functionality of zlib is fixed, while new features are contin-
uously added to FFmpeg. It appears that a shared interests
in developing similar features, and also, sharing developers,
decreases update propagation delay.

2.3 Guidelines
Based on our experience of tracking bug fixes we argue for
some guidelines that, we believe, would have improved bug
fixing inside and between the projects we examined.

1. Avoid Source and Binary Code Duplication Use dynamic
libraries instead of static libraries or source code inclusion.
For the latter the reused code has to be maintained and
monitored. This is by far the best practice for component
reuse because it allows other parties, mostly operating sys-
tem distributors, to help you.

2. Document Important Changes in the Version Control His-

tory Maintain a log file of corrective maintenance opera-
tions and specific security issues addressed. This facilitates
tracking of important updates, backporting security fixes to
older and stable versions. This is especially important for
long-term production systems.

3. Tag Important Changes in the Version Control History

Add a special tag (e.g., “[SECURITY]”) to commit messages
for security issues in the version control system.

4. Maintain a Global Notification System for Changes Fast
updates between projects is important for security-related
fixed and enhancements. A global notification system (e.g.,
based on a mailing list) can alert stakeholders of specific up-
dates. It should focus on major issues, not small updates,
and should be archived so users can review older changes.

5. Followup of Component Updates Complex/important
projects need an official list of reused components, annotated
with a timestamp and unique identifier (version number,
commit id, etc.) and a developer specifically responsible for
maintaining the list and promoting the project’s interests in
reused projects.

6. Write a Procedure for the Update Process Virtual orga-
nization and distributed development means any developer
should be able to replace any other, at least in theory. One
solution is a checklist of issues related to project mainte-
nance and releases: managing updates (notifications to and
from other projects) new releases, preferred communication
between developers (e.g., IRC channels, mailing lists), etc.



3. DISTRIBUTED TRUST
Until recently, version control software have been based on a
centralized model. In these systems, the software repository
is stored in a central location and is updated by only the
core developers. Other developers submit their changes to
the core group who decide which contributions to commit to
the repository. Committers are identified by nicknames, and
contributors are (sometimes) credited in the version control
log. The repositories are typically accessed through the in-
ternet and anyone can“check out”any version of the project,
but the result is a snapshot of the project with little or no
history information. Examples of such systems are rcs, cvs,
and subversion.

New version control systems follow a distributed model where
every potential developer manages his/her own personal co-
py of the entire repository, which includes all previous ver-
sions and full history information. Developers are no longer
classified as core or non-core, and every contributor can act
as a committer. Developers are identified by their real names
and email addresses. A developer may merge the work of
other developers into his/her own repository and may choose
to publish his/her own repository on the internet, so that
others can merge it into theirs. In essence, distributed ver-
sion control means that all developers are equal. Examples
include git, mercurial, and bazaar. Distributed version
control systems facilitate a new social organization within a
project. A network of trust is formed in the virtual organi-
zation: developer X merges changes from developer Y only
if X trusts Y and/or if X has reviewed Y ’s changes.

We are interested in the impact of these new systems on open
source development, and in comparing the predicted effects
with the actual. This includes facets such as the (1) tech-
nological, (2) social, (3) psychological, and even (4) ideo-
logical/political impact on developers. One of the attrac-
tive features of the git [6] version control system from our
point of view is that git records detailed information in the
version control history. (It is not unique in this regard.)
When one developer merges the work of another by merging
the remote repository into his/her own local repository, git
includes the remote version history. Furthermore, git dis-
tinguishes between the roles of author and committer, and,
for every change (commit), includes information about each
role in its version history.

One way to measure the trust relationship between develop-
ers X and Y is to calculate how long X delays before merging
the work of Y into his/her own repository, and how often
X merges the work of Y directly or through a third party.
Figure 2 shows a small subgraph of the “trust graph” for the
xserver project. Although it is really a directed graph, it is
shown as undirected for the sake of clarity. Each node rep-
resents a developer, and the edge labels count the number of
times the developers have merged from each other’s reposi-
tories. The subgraph only shows the most frequent merges;
the full graph contains 172 further developers and 940 fur-
ther merges. This kind of analysis is impossible to perform
using older, centralized version control systems. Note that
this graph is merely an approximation and does not include
any information about delays between merges.

Our plans for further work in this direction is to look at the

AC

AH

AJ

AN

AP

BB

DA

DD

DO
DS

EA

EW

GK

HH

IR

JH

KP

MA

MD

RM

SP

ZH

121

106

73

55

42

171

120

60

62

46

113

66

10730

38

53

49

32

304

164
40

53

43

34

35

42

39

Figure 2: Subgraph of the xserver update graph

effects of trust networks with different topologies on other
features of open source projects, such as the number of bug
reports and how quickly such issues are resolved. Trust net-
works (and other graphs derived from the repository history)
are of course not static, but evolve over time. It is interesting
to consider the impact this has on project success.

4. CONCLUSION
We have described earlier work on update propagation, and
outlined current work on extracting information about social
networks of open source projects. The greatest threat to the
validatity of this work is selection bias. Unfortunately, the
kind of fine grain analysis in Section 2 (given in more detail
in [4]) is difficult to carry out on a large scale. Our tonic is
to stress the context of our results and to be careful when
we generalize. We expect to rectify this in our current work.
Ultimately, our goal is to make not only descriptive but also
predictive observations to improve, or at least make sugges-
tions to improve, open source practices and to promote trust
in community-driven software development.

5. REFERENCES
[1] A. Capiluppi, C. Boldyreff. Coupling patterns in the

effective reuse of open source software. In Proc. 1st Intl.

Workshop Emerging Trends in FLOSS Research and

Development, page 9. IEEE Computer Society, 2007.

[2] T. R. Madanmohan, Rahul De’. Open source reuse in
commercial firms. IEEE Software, 21(6):62–69, 2004.

[3] A. Mockus. Large-scale code reuse in open source
software. In Proc. 1st Intl. Workshop Emerging Trends

in FLOSS Research and Development, page 7. IEEE
Computer Society, 2007.

[4] H. Orsila, J. Geldenhuys, A. Ruokonen, I. Hammouda.
Update propagation practices in highly reusable open
source components. In Proc. 4th IFIP Intl. Conf. Open

Source Software, pages 159–170. Springer-Verlag, 2008.

[5] http://ffmpeg.mplayerhq.hu

[6] http://git-scm.com

[7] http://zlib.net


