
Parameterizing Simulated Annealing for
Distributing Task Graphs on Multiprocessor SoCs

Heikki Orsila, Tero Kangas, Erno Salminen and Timo D. Hämäläinen
Institute of Digital and Computer Systems

Tampere University of Technology
P.O. Box 553, 33101 Tampere, Finland

Email: {heikki.orsila, tero.kangas, erno.salminen, timo.d.hamalainen}@tut.fi

Abstract— Mapping an application on Multiprocessor System-
on-Chip (MPSoC) is a crucial step in architecture exploration.
The problem is to minimize optimization effort and application
execution time. Simulated annealing is a versatile algorithm
for hard optimization problems, such as task distribution on
MPSoCs. We propose a new method of automatically selecting
parameters for a modified simulated annealing algorithm to save
optimization effort. The method determines a proper annealing
schedule and transition probabilities for simulated annealing,
which makes the algorithm scalable with respect to application
and platform size. Applications are modeled as static acyclic task
graphs which are mapped to an MPSoC. The parameter selection
method is validated by extensive simulations with 50 and 300
node graphs from the Standard Graph Set.

I. INTRODUCTION

Efficient MPSoC implementation requires exploration to
find an optimal architecture as well as mapping and scheduling
of the application on the architecture. The large design space
must be pruned systematically, since the exploration of the
whole design space is not feasible. This, in turn, calls for
optimization algorithms in which the cost function consists
of execution time, communication time, memory, energy
consumption and silicon area constraints, for example. The
iterative algorithms evaluate a number of application mappings
for each resource allocation candidate. For each mapping, an
application schedule is determined to evaluate the cost.

This paper presents a new method to automatically select
parameters for the simulated annealing (SA) algorithm [1].
Parameter selection is needed because SA is a meta-algorithm
that doesn’t specify all the necessary details. Our algorithm
selects annealing schedule and transition probabilities to maxi-
mize application performance and minimize optimization time.
The algorithm is targeted to map and schedule applications for
MPSoCs. However, the algorithm is not limited to MPSoC
architectures or performance optimization.

The SoC applications are modeled as acyclic static task
graphs (STGs) in this paper. Parallelizing STGs to speedup the
execution time is a well researched subject [2], but MPSoC
architectures present more requirements, such as application
execution time estimation for architecture exploration, com-
pared to traditional multiprocessor systems. Nodes of the
STG are finite deterministic computational tasks, and edges
represent dependencies between the nodes. Computational
nodes block until their data dependencies are resolved, i.e.

they have all needed data. Node weights represent the amount
of computation associated with a node. Edge weights represent
amount of communication needed to transfer results between
the nodes. The details of task graph parallelization for an
MPSoC can be found, for example, in [3]. SA is used to place
all tasks onto specific processing elements (PEs) to parallelize
execution. Alternative solutions for the problen can be found,
for example, in [2].

The basic concepts and the related work of task paralleliza-
tion with SA is presented in Section II. The contribution of
this paper is adaptation and parametrization of SA for task
mapping, which is described in Section III. The algorithm was
evaluated with a set of task graphs and compared to the pure
SA algorithm as reported in Section IV. Finally, the concluding
remarks are given.

II. RELATED WORK

A. Algorithms for Task Mapping

Architecture exploration needs automatic tuning of opti-
mization parameters for architectures of various sizes. Without
scaling, algorithm may spend excessive time optimizing a
small systems or result in a sub-optimal solution for a large
system. Wild et al. [4] compared SA, Tabu Search (TS) [5] and
various other algorithms for task distribution. The parameter
selection for SA had geometric annealing schedule that did
not consider application or system architecture size, and thus
did not scale up to bigger problems without manual tuning of
parameters.

Braun et al. [6] compared 11 optimization algorithms for
task distribution. TS outperformed SA in [4], but was worse
in [6], which can be attributed to different parameter selection
used. Braun’s method has a proper initial temperature selection
for SA to normalize transition probabilities, but their annealing
schedule does not scale up with application or system size,
making both [4] and [6] unsuitable for architecture exporation.

Our work presents a deterministic method for deciding
efficient annealing schedule and transition probabilities to
minimize iterations needed for SA, and, hence, allows efficient
architecture exploration also to large systems. The method
determines proper initial and final temperatures and the num-
ber of necessary iterations per temperature level to avoid
unnecessary optimization iterations, while keeping application

1-4244-0622-6/06/$20.00 ©2006 IEEE.

performance close to maximum. This will save optimization
time and thus speed up architecture exploration.

B. Simulated Annealing

SA is a probabilistic non-greedy algorithm [1] that explores
search space of a problem by annealing from a high to
a low temperature state. The algorithm always accepts a
move into a better state, but also into a worse state with a
changing probability. This probability decreases along with
the temperature, and thus the algorithm becomes greedier. The
algorithm terminates when the final temperature is reached and
sufficient number of consecutive moves have been rejected.

Fig. 1 shows the pseudo-code of the SA algorithm used with
the new method for parameter selection. Implementation spe-
cific issues compared to the original algorithm are explained
in Section III. The Cost function evaluates execution time of
a specific mapping by calling the scheduler. S0 is the initial
mapping of the system, T0 is the initial temperature, and
S and T are current mapping and temperature, respectively.
New Temperature Cooling function, a contribution of
this paper, computes a new temperature as a function of initial
temperature T0 and iteration i. R is the number of consecutive
rejects. Move function moves a random task to a random PE,
different than the original PE. Random function returns an
uniform random value from the interval [0, 1). New Prob

function, a contribution of this paper, computes a probability
for accepting a move that increases the cost. Rmax is the
maximum number of consecutive rejections allowed after the
final temperature has been reached.

III. THE PARAMETER SELECTION METHOD

The parameter selection method configures the annealing
schedule and acceptance probability functions.

New Temperature Cooling function is chosen so that
annealing schedule length is proportional to application and
system architecture size. Moreover the initial temperature T0

and final temperature Tf must be in the relevant range to affect
acceptance probabilities efficiently. The method uses

New Temperature Cooling(T0, i) = T0 ∗ qb
i

L
c,

where L is the number of mapping iterations per temperature
level and q is the proportion of temperature preserved after
each temperature level. This paper uses q = 0.95. Determining
proper L value is important to anneal more iterations for larger
applications and systems. This method uses

L = N(M − 1),

where N is the number of tasks and M is the number of
processors in the system. Also, Rmax = L.

A traditionally used acceptance function is

Trad Prob(∆C, T) =
1

1 + exp(∆C
T

)
,

but then probability range for accepting moves is not adjusted
to a given task graphs because ∆C is not normalized. The
acceptance probability function used in this method has a

SIMULATED ANNEALING(S0, T0)
1 S ← S0

2 C ← COST(S0)
3 Sbest ← S

4 Cbest ← C

5 R← 0
6 for i← 0 to ∞
7 do T ← NEW TEMPERATURE COOLING(T0, i)
8 Snew ← MOVE(S, T)
9 Cnew ← COST(Snew)

10 ∆C ← Cnew − C

11 r ← RANDOM()
12 p← NEW PROB(∆C, T)
13 if ∆C < 0 or r < p

14 then if Cnew < Cbest

15 then Sbest ← Snew

16 Cbest ← Cnew

17 S ← Snew

18 C ← Cnew

19 R← 0
20 else if T ≤ Tf

21 then R← R + 1
22 if R ≥ Rmax

23 then break
24 return Sbest

Fig. 1. Pseudo-code of the simulated annealing algorithm

normalization factor to consider only relative cost function
changes. Relative cost function change adapts automatically to
different cost function value ranges and graphs with different
task execution times.

New Prob(∆C, T) =
1

1 + exp(∆C
0.5C0T

)
,

where C0 = Cost(S0), the initial cost of the optimized
system. Figure 2 shows relative acceptance probabilities.

The initial temperature chosen by the method is

T P
0 =

ktmax

tminsum

,

where tmax is the maximum execution time for any task on
any processor, tminsum the sum of execution times for all tasks
on the fastest processor in the system, and k ≥ 1 is a constant.
Constant k, which should practically be less than 10, gives a
temperature margin for safety. Section IV-A will show that k =
1 is sufficient in our experiment. The rationale is choosing an
initial temperature where the biggest single task will have a fair
transition probability of being moved from one PE to another.
The transition probabilities with respect to temperature and
∆Cr = ∆C

C0

can be seen in Figure 2. Section IV will show that
efficient annealing happens in the temperature range predicted
by the method. The chosen final temperature is

T P
f =

tmin

ktmaxsum

,

10−4 10−3 10−2 10−1 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

∆C
r
 = 0.0001

∆C
r
 = 0.0010

∆C
r
 = 0.0100

∆C
r
 = 0.1000

∆C
r
 = 1.0000

Temperature

A
cc

ep
ta

nc
e

pr
ob

ab
ili

ty
 o

f a
 m

ov
e

to
 w

or
se

 s
ta

te

Fig. 2. Probabilities for the normalized probability function: ∆Cr =
∆C
C0

where tmin is the minimum execution time for any task on any
processor and tmaxsum the sum of execution times for all tasks
on the slowest processor in the system. Choosing initial and
final temperature properly will save optimization iterations.
On too big a temperature, the optimization is practically
Monte Carlo optimization because it accepts moves to worse
positions with a high probability. And thus, it will converge
very slowly to optimum because the search space size is in
O(MN). Also, too low a probability reduces the annealing
to greedy optimization. Greedy optimization becomes useless
after a short time because it can not espace local minima.

IV. RESULTS

A. Experiment

The experiment uses 10 random graphs with 50 nodes
and 10 random graphs with 300 nodes from the Standard
Task Graph set [7] to validate that the parameter selection
method chooses good acceptance probabilities (New Prob)
and annealing schedule (T P

0 , T P
f , and L). Random graphs

are used to evaluate optimization algorithms as fairly as
possible. Non-random applications may well be relevant for
common applications, but they are dangerously biased for
general parameter estimation. Investigating algorithm bias and
classifying computational tasks based on the bias are not topics
of this paper. Random graphs have the property to be neutral
of the application.

Optimization was run 10 times independently for each
task graph. Each graph was distributed onto 2-8 PEs. Each
anneal was run from a high temperature T0 = 1.0 to a
low temperature Tf = 10−4 with 13 different L values.
The experiment will show that [Tf , T0] is a wide enough
temperature range for optimization and that [T P

f , T P
0] is a

proper subset of [Tf , T0] which will yield equally good results
in a smaller optimization time. L values are powers of 2 to test
a wide range of suitable parameters. All results were averaged
for statistical reliability. The optimization parameters of the
experiment are shown in Table I.

The SoC platform was a message passing system where
each PE had some local memory, but no shared memory. The
PEs were interconnected with a single dynamically arbitrated

TABLE I
OPTIMIZATION PARAMETERS FOR THE EXPERIMENT

Parameter Value Meaning
L 1, 2, 4, . . . , 4096 Iterations per temperature level

T0 1 Initial temperature
Tf 10−4 Final temperature
M 2 - 8 Number of processors
N 50, 300 Number of tasks

2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

A
ve

ra
ge

 s
pe

ed
up

Number of PEs

L = 1−4096

Fig. 3. Averaged speedups for 300 node graphs with M=2-8 processing
elements and different L values (L = 1, 2, . . . , 4096) for each processing
element set.

shared bus that limits the SoC performance because of bus
contention. The optimization software was written in C lan-
guage and executed on a 10 machine Gentoo Linux cluster
each machine having a 2.8 GHz Intel Pentium 4 processor
and 1 GiB of memory. A total of 2.03G mappings were tried
in 909 computation hours leading to average 620 mappings

s
.

B. Experimental Results

Figure 3 shows averaged speedups for 300-node task graphs
with respect to number of iterations per temperature level and
number of PEs. Speedup is defined as t1

tM
, where ti is the

graph execution time on i PEs. The bars show that selecting
L = N(M − 1), where N = 300 is the number of tasks and
M ∈ [2, 8] gives sufficient iterations per temperature level to
achieve near best speedup (over 90% in this experiment) when
the reference speedup is L = 4096. The Figure also shows
that higher number of PEs requires higher L value which is
logically consistent with the fact that higher number of PEs
means to a bigger optimization space.

Figure 4 shows average speedup with respect to temperature.
Average execution time proportion for a single task in a 300
node graph is 1

300
= 0.0033. With our normalized acceptance

probability function this also means the interesting temperature
value for annealing, T = 0.0033, falls safely within the
predicted temperature range [T P

f , T P
0] = [0.0004, 0.0074]

computed with k = 1 from 300 node graphs. The Figure
shows that optimization progress is fastest at that range. The
full range [Tf , T0] was annealed to show convergence outside

10−4 10−3 10−2 10−1 100
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Temperature

A
ve

ra
ge

 s
pe

ed
up

 w
he

n
M

=2
−8

L = 4096 iterations
L = 256
L = 64
L = 16
L = 1

SA opt.
progress

"Monte Carlo"SA region

Predicted range

Fig. 4. Averaged speedup with respect to temperature for 300 node graphs
with different L values.

10−4 10−3 10−2 10−1 100
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Temperature

A
ve

ra
ge

 s
pe

ed
up

 w
he

n
M

 =
 2

−8

L = 4096
L = 256
L = 64
L = 16
L = 1

Predicted range

Fig. 5. Averaged speedup with respect to temperature for 50 node graphs
with different L values.

the predicted range. The method also applies well for the
50 node graphs, as shown in Figure 5, where the interesting
temperature point is at T = 1

50
= 0.02. The predicted range

computed for 50 node graphs with k = 1 is [0.0023, 0.033]
and the Figure shows that steepest optimization progress falls
within that range.

Annealing the temperature range [10−2, 1] with 300 nodes
in Figure 4 is avoided by using the parameter selection method.
That range is essentially Monte Carlo optimization which
converges very slowly and is therefore unnecessary. The tem-
perature scale is exponential and therefore that range consists
of half the total temperature levels in the range [Tf , T0]. This
means approximately 50% of optimization time can be saved
by using the parameter selection method. The main benefit of
this method is determining an efficient annealing schedule.

The average speedups with respect to number of mapping
evaluations with different L values is shown in Figure 6.
Optimization time is a linear function of evaluated mappings.

100 101 102 103 104 105 106
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Evaluated mappings

A
ve

ra
ge

 s
pe

ed
up

 w
he

n
M

 =
 2

−8

L = 4096 iterations
L = 256
L = 64
L = 16
L = 1

16

64

256
4096

Fig. 6. Averaged speedup with respect to mapping evaluations for 300 node
graphs with different L values.

This Figure also strenghtens the hypothesis that L = N(M −
1) = 300, . . . , 2100 is sufficient number of iterations per
temperature level.

V. CONCLUSION

The new parameter selection method was able to predict
an efficient annealing schedule for simulated annealing to
both maximize application execution performance and also
minimize optimization time. Near maximum performance was
achieved by selecting the temperature range and setting the
number of iterations per temperature level automatically based
on application and platform size. The number of temperature
levels was halved by the method. Thus the method increased
accuracy of architecture exploration and accelerated it.

Further research is needed to investigate simulated anneal-
ing heuristics that explore new states in the mapping space. A
good choice of mapping heuristics can improve solutions and
accelerate convergence, and it is easily applied into the existing
system. Further research should also investigate how this
method applies to optimizing memory, power consumption,
and other factors in a SoC.

REFERENCES

[1] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi, Optimization by simulated
annealing, Science, Vol. 200, No. 4598, pp. 671-680, 1983.

[2] Y.-K. Kwok and I. Ahmad, Static scheduling algorithms for allocating
directed task graphs to multiprocessors, ACM Comput. Surv., Vol. 31,
No. 4, pp. 406-471, 1999.

[3] H. Orsila, T. Kangas, T. D. Hämäläinen, Hybrid Algorithm for Mapping
Static Task Graphs on Multiprocessor SoCs, International Symposium on
System-on-Chip (SoC 2005), pp. 146-150, 2005.

[4] T. Wild, W. Brunnbauer, J. Foag, and N. Pazos, Mapping and scheduling
for architecture exploration of networking SoCs, Proc. 16th Int. Confer-
ence on VLSI Design, pp. 376-381, 2003.

[5] F. Glover, E. Taillard, D. de Werra, A User’s Guide to Tabu Search,
Annals of Operations Research, Vol. 21, pp. 3-28, 1993.

[6] T. D. Braun, H. J. Siegel, N. Beck, A Comparison of Eleven Static
Heuristics for Mapping a Class if Independent Tasks onto Heterogeneous
Distributed Systems, IEEE Journal of Parallel and Distributed Computing,
Vol. 61, pp. 810-837, 2001.

[7] Standard task graph set, [online]: http://www.kasahara.elec.waseda.ac.jp/schedule,
2003.

	Index
	SOC 2006
	Conference Info
	Welcome Message
	Invited Presentations
	Committees
	Sponsors

	Sessions
	Tuesday, 14 November 2006
	TueAm2-Invited1
	TueAm3-Industry1 and Coffee
	TueAm4-Invited2
	TuePm1-SoC Applications
	TuePm2-Industry2 and Coffee

	Wednesday, 15 November 2006
	WedAm1-Reconfigurability
	WedAm4-TTA and Networks
	WedPm1-Invited5
	WedPm2-Industry4 and Coffee

	Thursday, 16 November 2006
	ThuAm2-Poster1 and Coffee
	ThuAm3-Network-on-Chip
	ThuPm2-Poster2 and Coffee
	ThuPm3-SoC Design and Analysis
	ThuPm4-MPSoC Issues

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Y

	Papers
	All Papers
	Papers by Session
	Papers by Topics

	Topics
	Alternative computing paradigms
	Analysis and early estimation techniques, technology ro ...
	Application-specific processors and architectures
	Configurable and reconfigurable architectures
	Design flow and methodology
	Embedded processor hardware
	Embedded software tools and techniques, e.g. retargetab ...
	Low-power techniques
	Multiprocessor SoC
	Network-on-Chip
	On-chip communication and interconnects
	Platform architectures
	Reuse techniques
	SoC applications
	System-level integration
	Tools and languages for SoC design
	Verification, debugging, testing and testability

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Heikki Orsila
	Tero Kangas
	Erno Salminen
	Timo D. Hämäläinen

