Optimal Subset Mapping And Convergence Evaluation of Mapping Algorithms for Distributing Task Graphs on Multiprocessor SoC

Heikki Orsila, Erno Salminen, Marko Hännikäinen, Timo D. Hämäläinen

heikki.orsila, erno.salminen, marko.hannikainen,

timo.d.hamalainen@tut.fi

Institute of Digital and Computer Systems Tampere University of Technology, Finland

Presentation Outline

- Introduction
- Experiment
- Algorithms
- Comparison of algorithms
- Conclusions
- References
- + all the algorithms, graphs and pictures in the end

Introduction (1/2)

- Automatic distribution of *process networks* onto a multiprocessor system while satisfying some specific criteria
- Assume N tasks in the process network, and M processing elements (PEs) in the multiprocessor system
- Define mapping as one possible placement of N tasks to M processing elements (task i goes to PE x, task j goes to PE y, ...)

Introduction (2/2)

- The problem is to minimize a cost function
 - Minimizing the cost function often means maximizing performance or optimizing some other property
 - NP problem ~> true minimum is not generally achieved or known, but maybe the result is good enough
- Also, try to minimize optimization time
 - trade-off between a good result and short optimization time
 - This is important in exploration of large design space
 - Optimum solution for distribution varies with the architecture

Contributions

- A new mapping algorithm called Optimal Subset Mapping (OSM)
 - OSM sacrifices result goodness to decrease optimization time
- Comparison of mapping algorithms with respect to result goodness, optimization time and converge
- Supporting evidence for our simulated annealing parametrization method presented in [2][3]
- These methods are suitable for both shared and distributed memory systems

Experiment

- Compare 6 algorithms
- 10 random graphs, N = 300 nodes
- Simulation run 10 times independently, results averaged
- M = 2, 4 and 8 processing elements connected with a shared bus
- Measure speedup with respect to a single processor system

Algorithms (1/3)

- Use algorithms that have *reasonable* polynomial optimization time upper-bounds with respect to number of tasks N and processing elements M
- Upper-bounds for mappings tried for algorithms:
 - Optimal subset mapping (OSM): $O(\frac{N^2M}{\log N + \log M})$
 - Our simulated annealing variant (SA+AT): $O(NM \log \frac{T_0}{T_f})$
 - Group Migration (GM): $O(N^2M)$
 - Random mapping: fixed number of iterations (only used as a reference)

Algorithms (2/3)

- Group Migration (GM), also known as Kernighan-Lin graph partitioning algorithm
 - deterministic
 - greedy, may get stuck into local minima
- SA+AT is our version of the simulated annealing algorithm
 [3]
 - Stochastic and non-greedy
 - Automatic temperature (AT) scale is determined from the graph
 - Transition probabilities are normalized for efficient optimization
 - Fully automated parameter selection ~> requires no manual tuning of parameters
- The hybrid algorithm [4] is a combination: result of SA is a starting point for GM

Algorithms (3/3)

- OSM is the Optimal Subset Mapping algorithm
 - A divide and conquer algorithm. Solves a subset of the problem optimally, but does not guarantee global optimum
 - Picks a subset of tasks and brute-forces an optimal mapping for the subset, and then picks another subset and optimizes that
 - The subset size is increased and decreased continuously when and if there is potential for optimization
 - When increasing the subset size does not improve the result anymore, the algorithm terminates
 - Inspired by the Sequential Minimal Optimization algorithm [11] invented for optimizing Support Vector Machine neural networks

Comparison of Algorithms (1/3)

The following figure shows convergence for 8 processing elements for each algorithm. The X-axis is the number of mappings tried (logarithmic scale). The Y-axis is the average speedup (1.0 means no speedup) over all graphs.

TAMPERE UNIVERSITY OF TECHNOLOGY

Comparison of Algorithms (2/3)

Following table shows speedups and convergence rate for each algorithm:

Algorithm	Speedup	Speedup /	Convergence
		Iterations	
Random	1.76	1.0 (reference level)	Too long
OSM	3.25	6.11	Fast
GM	3.38	1.21	Slow
SA+AT	3.65	2.58	Fast
Hybrid	3.69	0.20	Slow

Comparison of Algorithms (3/3)

- Random mapping shows the base-level for optimization
- OSM is most suited for comparing architectures and systems rapidly, but does not yield good speedup
- GM is not suitable for architecture exploration as it is slow and does not yield good speedup
- Hybrid algorithm yields the best speedup, but it is slow

Future directions:

- Combine features of each algorithm. For example, start with OSM, and after rapid initial convergence, switch to SA+AT.
- Try genetic algorithms. Problem: hard to select proper

Discussion

- Almost all papers on task distribution that use Simulated Annealing leave some parameters undocumented
 - Hard to learn about Simulated Annealing even if there are lots of papers that use it
 - We were motivated to document parameters of Simulated Annealing properly [2] [3]
- We use random graphs to avoid application bias in performance
- Static acyclic graphs have very well known scheduling properties, and hence, differences in results are due to mapping algorithms
- Group migration is highly sensitive to initial values, but other algorithms are not

Conclusions

- This paper demonstrates convergence properties of several algorithms
- This paper demonstrates that automatic parameter selection for simulated annealing can be effective
- SA+AT algorithm converges rapidly, but still yields very good results
- The new OSM algorithm converges very rapidly, but does not yield very good results. It is still suitable for comparing architecture and system alternatives in architecture exploration.

References (1/3)

- Y.-K. Kwok and I. Ahmad, Static scheduling algorithms for allocating directed task graphs to multiprocessors, ACM Comput. Surv., Vol. 31, No. 4, pp. 406-471, 1999.
- H. Orsila, T. Kangas, E. Salminen, M. Hännikäinen,
 T. D. Hämäläinen, Automated Memory-Aware Application Distribution for Multi-Processor System-On-Chips, Journal of Systems Architecture, 2007, Elsevier, In print.
- H. Orsila, T. Kangas, E. Salminen, T. D. Hämäläinen, Parameterizing Simulated Annealing for Distributing Task Graphs on multiprocessor SoCs, International Symposium on System-on-Chip (SoC 2006), Tampere, Finland, November 14-16, 2006, pp. 73-76.

References (2/3)

- H. Orsila, T. Kangas, T. D. Hämäläinen, *Hybrid Algorithm for Mapping Static Task Graphs on Multiprocessor SoCs*, International Symposium on System-on-Chip (SoC 2005), pp. 146-150, 2005.
- 5. *Standard task graph set*, [online]: http://www.kasahara.elec.waseda.ac.jp/schedule, 2003.
- T. D. Braun, H. J. Siegel, N. Beck, A Comparison of Eleven Static Heuristics for Mapping a Class if Independent Tasks onto Heterogeneous Distributed Systems, IEEE Journal of Parallel and Distributed Computing, Vol. 61, pp. 810-837, 2001.
- 7. G. Kahn, *The semantics of a simple language for parallel programming*, Information Processing, pp. 471-475, 1974.

References (3/3)

- T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen, T.D. Hämäläinen, J. Riihimäki, K. Kuusilinna, UML-based Multi-Processor SoC Design Framework, Transactions on Embedded Computing Systems, ACM, 2006.
- B.W. Kernighan, S. Lin, *An Efficient Heuristics Procedure for Partitioning Graphs*, The Bell System Technical Journal, Vol. 49, No. 2, pp. 291-307, 1970.
- S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi, *Optimization by* simulated annealing, Science, Vol. 200, No. 4598, pp. 671-680, 1983.
- 11. J. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines, Microsoft Research Technical Report MSR-TR-98-14, 1998.

Optimal Subset Mapping Pseudo-code

Optimal_Subset_Mapping(S)

1 $S_{best} \leftarrow S$ 2 $C_{best} \leftarrow \text{Cost}(S)$ 3 $X \leftarrow 2$ for $R \leftarrow 1$ to ∞ 4 do $C_{old_best} \leftarrow C_{best}$ 5 $S \leftarrow S_{best}$ 6 $Subset \leftarrow Pick_Random_Subset(S, X)$ 7 for all possible mappings S_{sub} in Subset 8 **do** $S \leftarrow \text{APPLY}_\text{MAPPING}(S, S_{sub})$ 9 $C \leftarrow \text{Cost}(S)$ 10 if $C < C_{best}$ 11 12then $S_{best} \leftarrow S$ $C_{hest} \leftarrow C$ 13if $modulo(R, R_{max}) = 0$ 14then if $C_{best} = C_{old_best}$ 1516then if $X = X_{max}$ 17then break 18 $X \leftarrow X + 1$ else $X \leftarrow X - 1$ 19 $X \leftarrow \operatorname{Max}(X_{min}, X)$ 2021 $X \leftarrow \operatorname{MIN}(X_{max}, X)$ 22return S_{best}

Application and architecture parameters

	Variable	(note)	Value
Task graphs	# graphs		10
	# tasks per graph (N)		302
	# edges per graph	(1)	1594, 5231, 8703
	comp time per task [us]	(1)	3.2, 5.1, 7.0
	comm vol per task [byte]	(1)	26, 1111, 3679
	comm/comp -ratio [Mbyte/s]	(1)	8, 218, 526
	max theor. parallelism [no unit]	(1)	4.3, 7.9, 12.8
	# PEs(M)		2, 4, 8
HW Platform	PE freq [MHz]		50
	Bus Freq [MHz]	(2)	10, 20, 40
	Bus width [bits]		32
	Bus bandwidth [Mb/s]	(2)	320, 640, 1280
	Bus arb. latency [cycles/send]		8
Algorithms	# runs per graph per alg	(3)	10
	algorithms		6
	determ, non-greedy		1: OSM
	determ, greedy		1: GM
	stoch., non-greedy		4: SA, SA+AT, hybrid, random
	stoch, greedy		-

Notes:

 $^{(1)} = \min$, avg, max

 $^{(2)}$ = values for 2,4,8 PEs, respectively

 $^{(3)}$ = only 1 run for GM

Optimization parameters

Alg.	Variable	(note)	Value
SA, SA+AT, Hybrid	# iter per T, $(L = N \cdot (M - 1))$	(1)	602, 1208, 2416
	# temperature levels		181
	# temperature scaling		q=0.95
	range of T (SA and hybrid)	(2)	$T_0 = 1.0, T_f = 0.0001$
	range of T (SA+AT)		T range coefficient $k=2$
	annealing schedule (T_0, i)		$T_0 \cdot q^{floor(i/L)}$
	move heuristic		move 1 random task
	acceptance function		$(1 + \exp(\Delta C / (0.5 C_0 T))^{-1})$
	end condition		$T=T_f$
			AND L rejected moves
Rand	# max interations		262 144
GM	no params needed		-
OSM	coefficient c		1.0
	exponent c_N		1.0
	exponent c_M		1.0
	subset size X [#tasks]	(1)	9, 5, 3
	# iterations per subset	(1)	512, 1024, 512

Notes:

⁽¹⁾ = values for 2,4,8 PEs, respectively

 $^{(2)} = T_0$ and T_f computed automatically in SA+AT

TAMPERE UNIVERSITY OF TECHNOLOGY

Optimal Subset Mapping And Convergence Evaluation of Mapping Algorithms for Distributing Task Graphs on Multiprocessor SoC - p. 20

Rounds and mapping iterations for OSM

PEs	rounds	Thousands of
	(min, avg, max)	iterations (min, avg, max)
2	271, 380, 611	34.1, 37.2, 73.6
4	239, 469, 899	80.6, 115.4, 259.1
8	199, 428, 1099	57.1, 88.8, 293.9

Best gain divided by the number of iterations

OSM progress plotted for each graph

SA+AT progress plotted for each graph

TAMPERE UNIVERSITY OF T

GM progress plotted for each graph

TAMPERE UNIVERSITY OF T