
Hybrid Algorithm for Mapping Static Task Graphs
on Multiprocessor SoCs

Heikki Orsila, Tero Kangas, and Timo D. Hämäläinen
Institute of Digital and Computer Systems

Tampere University of Technology
P.O. Box 553, 33101 Tampere, Finland

Email: {heikki.orsila, tero.kangas, timo.d.hamalainen}@tut.fi

Abstract— Mapping of applications on multiprocessor System-
on-Chip is a crucial step in the system design to optimize the
performance, energy and memory constraints at the same time.
The problem is formulated as finding solutions to an objective
function of the algorithm performing the mapping and scheduling
under strict constraints. Our solution is a new hybrid algorithm
that distributes the computational tasks modeled as static acyclic
task graphs The algorithm uses simulated annealing and group
migration algorithms consecutively and it combines a non-greedy
global and greedy local optimization techniques to have good
properties of both ways. The algorithm begins as coarse grain
optimization and moves towards fine grained optimization. As a
case study we used ten 50-node graphs from the Standard Task
Graph Set and averaged results over 100 optimization runs. The
hybrid algorithm gives 8% better execution time on a system
with four processing elements compared to simulated annealing.
In addition, the number of iterations increased only moderately,
which justifies the new algorithm in SoC design.

I. INTRODUCTION

Contemporary embedded system applications demand in-
creasing computing power and reduced energy consumption
at the same time. Multiprocessor System-on-Chip implemen-
tations have become more popular since it is often more
reasonable to use several low clock rate processors than a
single high-performance one. In addition, the overall perfor-
mance can be increased by distributing processing on several
microprocessors raising the level of parallelism.

However, efficient multiprocessor SoC implementation re-
quires exploration to find an optimal architecture as well as
mapping and scheduling of the application on the architecture.
This, in turn, calls for optimization algorithms in which the
cost function consists of execution time, communication time,
memory, energy consumption and silicon area constraints, for
example. The optimal result is obtained in a number of iter-
ations, which should be minimized to make the optimization
itself feasible. One iteration round consists of application task
mapping, scheduling and as a result of that, evaluation of the
cost function. In a large system this can take even days.

The principal problem is that in general the mapping of an
application onto a multiprocessor system is an NP-problem.
Thus verifying that any given solution is an optimum needs
exponential time and/or space from the optimization algorithm.
Fortunately it is possible in practice to device heuristics that
can reach near optimal results in polynomial time and space
for common applications.

We model the SoC applications as static acyclic task graphs
(STGs) in this papers. Distributing STGs to speedup the
execution time is a well researched subject [1], but multipro-
cessors SoC architectures represent a new problem domain
with significantly more requirements compared to traditional
multiprocessor systems.

This paper presents a new algorithm especially targeted
to map and schedule applications for multiprocessor SoCs
in an optimal way. In this paper the target is to optimize
the execution time, but the algorithm is also capable of
optimizing memory and energy consumption compared to
previous proposals.

The hybrid algorithm applies a non-greedy global opti-
mization technique known as simulated annealing (SA) and
a greedy local optimization technique known as the group
migration (GM) algorithm.

The basic concepts and the related work of task paralleliza-
tion, SA and GM are presented in Section II. The contribution
of this paper is the hybrid task mapping algorithm, which is
described in Section III. The algorithm was evaluated with a
set of task graphs and compared to the pure SA algorithm as
reported in Section IV. Finally, the concluding remarks are
given.

II. RELATED WORK

Wild et. al considered simulated annealing and tabu search
for SoC application parallelization [2]. Their algorithm uses
a special critical path method to identify important tasks
that need to be relocated. Also, Vahid [3] considered pre-
partitioning to shrink optimization search space, and in ad-
dition they apply various clustering algorithms, such as group
migration algorithm, to speedup the execution time. This
is similar approach to us, in which we enhance simulated
annealing with the group migration. Lei et al. [4] considered
a two-step genetic algorithm for mapping SoC applications to
speedup the execution time. Their approach starts with coarse
grain optimizations and continues with fine grain optimizations
as in our approach. Compared to our algorithm, they have
stochastic algorithms in both steps. Our algorithm adds more
reliability as the second step is deterministic.

A (1)
B (2)1

E (5)

1

F (6)

2

C (3)

4D (4)
1

1

Fig. 1. An example STG with computational costs in nodes and communi-
cation costs at edges. Node F is the result node that is data dependent on all
other nodes

A. Static Task Graphs

Nodes of the STG are finite deterministic computational
tasks, and edges represent data dependencies between the
nodes. Computational nodes block until their data depen-
dencies are resolved. Node weights represent the amount of
computation associated with a node. Edge weights represent
amount of communication needed to transfer results between
the nodes.

Fig. 1 shows an STG example. Node F is the result node
which is data dependent on all other nodes. Nodes A, C and
D are nodes without data dependencies, and hence they are
initially ready to run.

Each node is mapped to a specific processing element in
the SoC. The STG is fully deterministic, meaning that the
complexity of the computational task is known in advance,
and thus no load balancing technique, such as task migration,
is not needed. The distribution is done at compile time, and
the run-time is deterministic. When a processing element has
been chosen for a node it is necessary to schedule the STG on
the system. Schedule determines execution order and timing
of execution for each processing element. The scheduler has to
take into account the delays associated with nodes and edges,
and data dependencies which affect the execution order.

B. Simulated Annealing

SA is a probabilistic non-greedy algorithm [5] that explores
search space of a problem by annealing from a high to a low
temperature state. The greediness of the algorithm increases as
the temperature decreases, being almost greedy at the end of
annealing. The algorithm always accepts a move into a better
state, but also into a worse state with a changing probability.
This probability decreases along with the temperature, and
thus the algorithm becomes greedier. The algorithm terminates
when the maximum number of iterations have been made, or
too many consecutive moves have been rejected.

Fig. 2 shows the pseudo-code of the SA algorithm used in
the hybrid algorithm. Implementation specific issues compared
to the original algorithm are mentioned in Section IV-A. The
Cost function evaluates badness of a specific mapping by
calling the scheduler to determine execution time. S0 is the
initial state of the system, and T0 is the initial temperature.
Temperature–Cooling function computes a new temperature
as a function of initial temperature T0 and iteration i. Move
function makes a random move to another state. Random
function returns a random value from the interval [0, 1). Prob

SIMULATED-ANNEALING(S0, T0)
1 S ← S0

2 C ← COST(S0)
3 Sbest ← S
4 Cbest ← C
5 Rejects← 0
6 for i← 1 to imax

7 do T ← TEMPERATURE-COOLING(T0, i)
8 Snew ← MOVE(S, T)
9 Cnew ← COST(Snew)

10 r ← RANDOM()
11 p← PROB(Cnew − C, T)
12 if Cnew < C or r < p
13 then if Cnew < Cbest

14 then Sbest ← Snew

15 Cbest ← Cnew

16 S ← Snew

17 C ← Cnew

18 Rejects← 0
19 else Rejects← Rejects + 1
20 if Rejects ≥ Rejectsmax

21 then break
22 return Sbest

Fig. 2. Pseudo-code of the simulated annealing algorithm

function computes a probability that a move that increases the
cost is accepted.

C. Group Migration Algorithm

Group migration algorithm ([3], [6]) is a greedy local
search technique that changes mapping of STG nodes one by
one, accepting only moves that improve current solution as
determined by the scheduler.

Fig. 3 shows pseudo-code of the GM algorithm used in
the hybrid algorithm. The function Group–Migration calls
the function GM–Round as long as the solution improves.
Function GM–Round tries to move each task one by one from
its PE to all other PEs. If it finds a move that decreases cost,
it records the change, and restores the original mapping and
goes to the next task. After all tasks have been tried, it takes
the best individual move, applies that move on the mapping,
and marks the associated task as non-movable. Any task that
has been marked non-movable will not be considered as a
movable candidate again. Then the algorithm starts from the
beginning, trying each movable task again. This is continued
until no cost decrease is found.

III. THE PROPOSED HYBRID ALGORITHM

A. Mapping

The hybrid algorithm presented in this paper uses SA and
GM algorithms to support each other. Fig. 4 shows pseudo-
code of the main optimization loop. Initially the mapping is
set by the function Fast–Premapping shown in Fig. 5. Fast
premapping distributes node mappings so that parents of a

GROUP-MIGRATION(S)
1 while True
2 do Snew ← GM-ROUND(S)
3 if COST(Snew) < COST(S)
4 then S ← Snew

5 else break
6 return S

GM-ROUND(S0)
1 S ← S0

2 Mcost ← COST(S)
3 Moved← [False] ∗Ntasks

4 for i← 1 to Ntasks

5 do Mtask = NIL
6 MPE = NIL
7 for t← 0 to Ntasks − 1
8 do if Moved[t] = True
9 then continue

10 Sold ← S
11 for A← 0 to NPEs − 1
12 do if A = Aold

13 then continue
14 S[t]← A
15 if COST(S) < Mcost

16 then continue
17 Mcost = COST(S)
18 Mtask = t
19 Magent = A
20 S ← Sold

21 if Magent = NIL
22 then break
23 Moved[Mtask]← True
24 S[Mtask]←Magent

25 return S

Fig. 3. Pseudo-code of the group migration algorithm

child are on different PEs. As an example, nodes in the Fig. 1
would be premapped to 3 PE system as follows: F 7→ PE 1,
B 7→ 1, E 7→ 2, C 7→ 3, A 7→ 1, and D 7→ 2. SA and
GM algorithms are called sequentially until the optimization
terminates. There are two specialties in this approach.

First, SA is called many times, but with each time the
initial temperature is half of that of the previous iteration.
The SA algorithm itself can visit a good state but leave it
for a worse state with certain probability, since the algorithm
is not totally greedy. To overcome this deficiency our SA
implementation returns the best state visited from any SA
algorithm invocation, and the next call of SA begins from
the best known state. Furthermore, since initial temperature is
halved after each invocation, the algorithm becomes greedier
during the optimization process. This process is iterated until
a final temperature Tfinal has been reached. This enables both
fine and coarse grain search of the state space with reasonable
optimization cost. At each invocation it becomes harder for

OPTIMIZATION()
1 S ← FAST-PREMAPPING()
2 T ← 1.0
3 while T > Tfinal

4 do S ← SIMULATED-ANNEALING(S, T)
5 if UseGroupMigration = True
6 then S ← GROUP-MIGRATION(S)
7 T ← T

2

8 return S

Fig. 4. Pseudo-code of the main optimization loop

FAST-PREMAPPING()
1 Assigned← [False] ∗Ntasks

2 S ← [NIL] ∗Ntasks

3 S[ExitNode]← 0
4 F ← EmptyF ifo
5 FIFO-PUSH(F,ExitNode)
6 while F 6= EmptyF ifo
7 do n← FIFO-PULL(F)
8 A← S[node]
9 for each parent p of node n

10 do if Assigned[p] = True
11 then continue
12 Assigned[p] = True
13 S[p] = A
14 FIFO-PUSH(F, p)
15 A← (A + 1) mod Nagents

16 return S

Fig. 5. Pseudo-code of the fast premapping algorithm

the algorithm to make drastic jumps in the state space.

B. Scheduling

This paper considers node weights in task graphs as exe-
cution time to perform computation on a processing element
and edge weights as time to transfer data between PEs in
a SoC communication network. The scheduler used in this
system is a B-level scheduler [1]. Since nodes are mapped
before scheduling, B-level priorities associated with the nodes
remain constant during the scheduling. This approach accel-
erates optimization, because B-level priorities need not to
be recalculated. There exists better scheduling algorithms in
the sense that they produce shorter schedules, but they are
more expensive in optimization time [7]. When scheduling is
finished the total execution time of the STG is known, and
thus the cost of the mapping can be evaluated.

IV. RESULTS

A. Case Study Arrangements

The case study experiment used 10 random graphs, each
having 50 nodes, from the Standard Task Graph set [8]. We
used random graphs to evaluate optimization algorithms as

fairly as possible. Non-random applications may well be rele-
vant for common applications, but they are dangerously biased
for mapping algorithm comparison. Investigating algorithm
bias and classifying computational tasks based on bias are not
topics in this paper. Random graphs have the property to be
neutral of the application, and thus mapping algorithms that do
well on random graphs will do well on average applications.

Optimization was run 10 times independently for each task
graph. Thus 100 optimization runs were executed for both
algorithms. The objective function for optimization was the
execution time of a mapped task graph. The random graphs
did not have exploitable parallelism for more than 4 PEs so
that was chosen as the maximum number of PEs for the
experiment. Thus speedup of mapped task graphs was obtained
for 2, 3, and 4 PEs.

The SoC was a message passing system where each PE
had some local memory, but no shared memory. The PEs were
interconnected with a single dynamically arbitrated shared bus
that limits the SoC performance because of bus contention.

The optimizations were executed on a 10 machine Gentoo
Linux cluster. Optimization runs were distributed by using
rsync to copy input and output files between machines and
SSH to execute shell scripts remotely. Initially one machine
uploaded input files and optimization software to all machines,
and then commanded each machine to start optimization
software. After optimization was finished on all machines, the
results were downloaded back. All machines were 2.8 GHz
Intel Pentium 4 machines with 1 GiB of memory. Execution
time for optimization is given in Section IV-C.

The optimization system was written with Python language.
It is an object-oriented dynamically typed language that is
interpreted during execution. Python language was chosen to
save development time with object-oriented high-level tech-
niques. The optimization system code is highly modular in
object-oriented fashion.

The implementation of simulated annealing algorithm has
the following specific issues. Temperature–Cooling function
shown in Fig. 2. computes a new temperature with formula
T0 ∗p

i, where p is the percentage of temperature preserved on
each iteration. Move function makes a random state change so
that NtasksT0 random tasks are moved separately to a random
PE, where Ntasks is the number of tasks in the task graph.
Prob function is

Prob(∆C, T) =
1

1 + exp(∆C
0.5C0T

)
,

where C0 = Cost(S0). The C0 term is a special normalization
factor chosen to make annealing parameters more compatible
with different graphs.

B. SA and GM Iterations

Fig. 6 shows the progress of annealing without the group
migration algorithm for a random 50-node STG. The cost
function is the execution time for executing the mapped graph
on two processing elements. This figure shows how each
invocation of SA improves the overall solution, but improving

0 2000 4000 6000 8000 10000 12000 14000
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10−4 Optimization progress

Iteration

C
os

t

Best
SA invocations

Fig. 6. Simulated annealing of a 50 node random STG. Cost function is the
execution time for executing the mapped graph on two processing elements

0 2000 4000 6000 8000 10000 12000
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10−4 Optimization progress

Iteration

C
os

t

GM GM

GM
Best

Fig. 7. Simulated annealing combined with group migration algorithm of a
50 node random STG

is decelerated between each call. The first downfall is the
largest, and after that downfalls are less drastic.

Second, SA and GM are used to complement each other.
SA can climb from a local minima to reach a global minimum.
SA does not search for local minima, so it does not exploit
local similarity to reach better states by exploring local neigh-
borhoods. The GM algorithm is used to locally optimize SA
solutions as far as possible. Fig. 7 shows progress of combined
SA and GM optimization. At around iteration 2250 the GM
algorithm is able find a locally better solution and thus the
objective function value decreases. SA might not have found
that solution. At around iteration 8300 GM finds the best
solution by local optimization.

C. Hybrid Algorithm

The hybrid algorithm was compared with pure simulated
annealing by obtaining speedups for parallelized task graphs.
Speedup is defined as to/tp, where to is the original execution
time of the mapped graph and tp is the parallelized execution
time.

TABLE I
AVERAGED SPEEDUPS AND NUMBER OF COST FUNCTION EVALUATIONS

FOR ALGORITHMS

2 PEs 3 PEs 4 PEs
SA speedup 1.467 1.901 2.103
Hybrid speedup 1.488 1.977 2.278
Difference-% 1.4 4.0 8.3
SA cost evaluations 1298k 857k 767k
Hybrid cost evaluations 1313k 1047k 1322k
Evaluations difference-% 3.6 14.9 34.5

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Task graph

E
xe

cu
tio

n
tim

e
sp

ee
du

p

2 PEs
3 PEs
4 PEs

Fig. 8. Per task graph speedups for SA algorithm with 2, 3, and 4 processing
elements

The results are shown in Table I. The advantage of the
hybrid algorithm increases as the number of PEs increases.
With 2 PEs, the benefit is small, but with 3 PEs it is 4.0%
better speedup on average for 10 graphs with 10 independent
runs. With 4 PEs the benefit is 8.3% better speedup (0.175
speedup units). However, greater speedup is achieved with the
cost of optimization time.

Fig. 8 shows speedup values for each graph when SA
algorithm was used for optimization. There is 10 bar sets in
the figure, and each bar set presents 3 values for 2, 3, and 4
processing elements respectively. All values are averaged over
10 independent runs. Fig. 9 shows same values for the hybrid
algorithm.

Optimization time is determined by the number of cost
function evaluations as tabulated in Table I. The hybrid
algorithm has 3.6%, 14.9%, and 34.5% more cost function
evaluations for 2, 3, and 4 PEs respectively. Total running
time for optimizations was 40036 seconds for SA, and 62007
seconds for the hybrid algorithm. Thus hybrid algorithm ran
55% longer in wall time. Compared to other proposals [2], the
average improvement of 8% is considered very good.

V. CONCLUSION

The new method applies both local and global optimization
techniques to speedup execution time of static task graphs. The
new method is a hybrid algorithm that combines simulated
annealing and group migration algorithms in a novel fashion.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Task graph

E
xe

cu
tio

n
tim

e
sp

ee
du

p

2 PEs
3 PEs
4 PEs

Fig. 9. Per task graph speedups for the hybrid algorithm with 2, 3, and 4

processing elements

The algorithm takes advantage of both greedy and non-greedy
optimization techniques.

Pure simulated annealing and the hybrid algorithm were
compared. The results show 8.3% speedup increase for the
hybrid algorithm with 4 PEs averaged over 100 test runs with
the expense of 34.5% iteration rounds.

Further research is needed to investigate simulated anneal-
ing heuristics that explore new states in the mapping space. A
good choice of mapping heuristics can improve solutions and
accelerate convergence, and it is easily applied into the existing
system. Further research should also investigate how this
method applies to optimizing other factors in a SoC. Execution
time is one factor, and memory and power consumption are
others.

REFERENCES

[1] Y.-K. Kwok and I. Ahmad, Static scheduling algorithms for allocating
directed task graphs to multiprocessors, ACM Comput. Surv., Vol. 31,
No. 4, pp. 406-471, 1999.

[2] T. Wild, W. Brunnbauer, J. Foag, and N. Pazos, Mapping and scheduling
for architecture exploration of networking SoCs, Proc. 16th Int. Confer-
ence on VLSI Design, 2003.

[3] F. Vahid, Partitioning sequential programs for CAD using a three-
step approach, ACM Transactions on Design Automation of Electronic
Systems, Vol. 7, No. 3, pp. 413-429, 2002.

[4] T. Lei and S. Kumar, A two-step genetic algorithm for mapping task
graphs to a network on chip architecture, Proceedings of the Euromicro
Symposium on Digital System Design (DSD’03), 2003.

[5] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Optimization by
simulated annealing, Science, Vol. 200, No. 4598, pp. 671-680, 1983.

[6] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and design
of embedded systems, Pearson Education, 1994.

[7] I. Ahmad and Y.-K. Kwok, Analysis, evaluation, and comparison of
algorithms for scheduling task graphs on parallel processors, Parallel
Architectures, Algorithms, and Networks, 1996.

[8] Standard task graph set, http://www.kasahara.elec.waseda.ac.jp/schedule,
2003.

