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ABSTRACT

The objective of this Thesis is to analyze and improve MPSoC design space explo-
ration, specifically the task mapping using Simulated Annealing (SA) with fully auto-
matic optimization. The work concentrates mostly on application execution time op-
timization. However, a trade-off between memory buffer and time optimization and
a trade-off between power and time optimization is also analyzed. Applications are
represented as public Standard Task Graph sets and Kahn Process Networks (KPNs).

Main focus is on SA as the optimization algorithm for task mapping. A state of the
art survey is presented on using SA for task mapping. Thesis analyzes the impact of
SA parameters on convergence. A systematic method is presented for automatically
selecting parameters. The method scales up with respect to increasing HW and SW
complexity. It is called Simulated Annealing with Automatic Temperature (SA+AT).

Optimal subset mapping (OSM) algorithm is presented as a rapidly converging task
mapping algorithm. SA+AT is compared with OSM, Group Migration, Random
Mapping and a Genetic Algorithm. SA+AT gives the best results. OSM is the most
efficient algorithm.

Thesis presents new data on the convergence of annealing. Answers are given to
global optimum convergence properties and the convergence speed in terms of map-
ping iterations. This covers optimization of the run-time of mapping algorithms so
that a trade-off can be made between solution quality and algorithm’s execution time.
SA+AT saves up to half the optimization time without significantly decreasing solu-
tion quality.

Recommendations are presented for using SA in task mapping. The work is intended
to help other works to use SA. DCS task mapper, an open source simulator and
optimization program, is presented and published to help development and evaluation
of mapping algorithms. The data to reproduce Thesis experiments with the program
is also published.
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1. INTRODUCTION

A multiprocessor system-on-chip (MPSoC) consists of processors, memories, accel-
erators and interconnects. Examples include the Cell, TI OMAP, ST Nomadik SA [87],
HIBI [47] [54] [66]. MPSoC design requires design space exploration (DSE) [30] to
find an appropriate system meeting several requirements that may be mutually con-
flicting, e.g. energy-efficiency, cost and performance.

An MPSoC may contain tens of processing elements (PEs) and thousands of software
components. Implementing the SoC and applications requires many person-years of
work. The complexity of the system requires high-level planning, feasibility estima-
tion and design to meet the requirements and reduce the risk of the project.

1.1 MPSoC design flow

High-level SoC design flows are used to decrease the investment risk in develop-
ment. Figure 1 shows the Koski [39] design flow for MPSoCs at a high level as a
representative design flow.

The first design phase defines the abstractions and functional components of the sys-
tem. UML is used to model the system components. Y-model [41] [42] is applied on
the system being designed. Architecture and applications are modeled separately but
combined together into a system by mapping.

A functional model of the system is created in the second phase. Application code is
written, or generated if possible, and functionally verified. Performance of applica-
tion components are estimated by using benchmarks, test vectors and profiling. Parts
of the application may later be implemented in HW to optimize performance.

The third and fourth design phase contains the design space exploration part. Problem
space defines the system parameters being searched for in exploration. This includes
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Fig. 1. Koski design flow for multiprocessor SoCs [38]

parameters such as the number of PEs, memory hierarchy, clock frequency, timing
events and placing application tasks to PEs. Objective space determines the proper-
ties that are the effects of design choices in the problem space. This includes prop-
erties such as execution time, communication time, power and silicon area. Problem
space properties do not directly affect the properties in the objective space. Explo-
ration searches for a combination of problem space properties to optimize objective
space properties. The third and fourth phases differ by the accuracy of objective
space measures in the simulation model, the fourth is more accurate.

The system is implemented in finer grain with a SystemC model in the fourth design
phase. The allocation, schedule and mapping is taken as input from the third phase.
The system is optimized again. A significantly fewer number of systems is evaluated
compare to third phase, because system evaluation is much slower now.

The fifth phase is physical implementation. The system is implemented and veri-
fied for FPGA. The application is finalized in C and hardware in VHDL. Accurate
objective space measures are finally obtained.
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Fig. 2. MPSoC implementation starts from the problem space that has platform capabilities
and required functionality. A point x is selected from the problem space X. The point
x defines a system which is implemented and evaluated with respect to measures in
objective space Y . These measures include performance, power, silicon area and
cost. Objective space measures define the objective function value f (x), which is the
fitness of the system.

1.2 The mapping problem

The mapping problem, a part of the exploration process, means finding x ∈ X to
optimize the solution of an objective function f (x)∈Rn, where X is the problem space
and x is the choice of free design parameters. Objective function uses simulation and
estimation techniques to compute objective space (Y ) measures from x. The resulting
value is a multi-objective optimization problem if n > 1. Figure 2 shows the relation
between problem and objective space.

Figure 3 shows the mapping process in higher detail. The first stage is system allo-
cation where the system is implemented by combining existing components and/or
creating new ones for evaluation. The system is then implemented by mapping se-
lected components to HW resources. Figure 4 shows tasks being mapped to PEs and
PEs connected with communication network. This yields a system candidate that can
be evaluated. Evaluation part determines objective space measures of the system.
Note, the evaluated system may or may not be feasible according to given objective
space constraints such as execution time, power and area. Pareto optimal feasible
systems are selected as the output of the process. In single objective case there is
only one such system.
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Fig. 4. SW components (application tasks) are mapped to HW components. T denotes an
application task. PE denotes a processing element.



1.2. The mapping problem 5

The application consists of tasks that are mapped to PEs. A task is defined to be any
executable entity or a specific job that needs to be processed so that the application
can serve its purpose. This includes operations such as computing output from input,
copying data from one PE to another, mandatory time delay, waiting for an event
to happen. A task has a mapping target, such as PE, task execution priority, execu-
tion time slot, communication channel to use, or any discrete value that represents
a design choice for a particular task. The mapping target can be determined during
system creation or execution time. A number of mappings is evaluated for each sys-
tem candidate. The number of mappings depends on the properties of the system
candidate, including the number of tasks and PEs.

The problem is finding a mapping from N objects to M resources with possible con-
straints. This means MN points in the problem space. For example, the problem space
for 32 tasks mapped to just 2 PEs has 4.3×109 points. It takes 136 years to explore
the whole problem space if evaluating one mapping takes one second. Therefore, it
is not possible to explore the whole problem space for anything but small problems.
This means the space must be pruned or reduced. A fast optimization procedure is
desired in order to cover a reasonable number of points in the problem space. This
is the reason for separate third and fourth stages in Koski. However, a fast procedure
comes with the expense of accuracy in objective space measurements, e.g. estimated
execution time and power.

Several algorithmic approaches have been proposed for task mapping [9] [20]. The
main approaches are non-iterative and iterative heuristics. Non-iterative heuristics
compute a single solution which is not further refined. Simulation is only used for
estimating execution times of application tasks and performance of PEs. Tasks are
mapped to PEs based on execution time estimates and the structure of the task graph.
List scheduling heuristics [51] are often used. Good results from these methods usu-
ally require that the critical path of the application is known.

The iterative approaches are often stochastic methods that do random walk in the
problem space. Iterative approaches give better results than non-iterative approaches
because they can try multiple solutions and use simulations instead of estimates for
evaluation. Several iterative algorithms have been proposed for task mapping. Most
of them are based on heuristics such as Simulated Annealing (SA) [12] [44], Ge-
netic Algorithms (GA) [31], Tabu Search (TS) [28] [7], local search heuristics, load
balancing techniques, and Monte Carlo. These methods have also been combined
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together. For example, both SA and GA are popular approaches that have been com-
bined together into a Genetic Simulated Annealing (GSA) [17] [77].

Parameters of the published algorithms have often not been reported, the effect of
different parameter choices is not analyzed, or the algorithms are too slow. Proper
parameters vary from task to task, but manual parameter selection is laborious and
error-prone. Therefore, systematic methods and analysis on parameter selection is
preferable in exploration. Development of these methods and analysis is the central
research problem in the Thesis. Automatic parameter selection methods are presented
for SA, and the effects of parameters are analyzed. SA was selected for the Thesis
because it has been successfully applied on many fields including task mapping, but
there is a lack of information on the effects of SA parameters on task mapping.

1.3 Objectives and scope of research

The objective of this Thesis is to analyze and improve MPSoC design space explo-
ration, specifically the task mapping using Simulated Annealing with fully automatic
optimization. The work concentrates mostly on application execution time optimiza-
tion. However, [P3] considers a trade-off between memory buffer and time optimiza-
tion and [P5] between power and time optimization.

MPSoCs used in this Thesis are modeled on external behavior level. Timings and
resource contention is simulated, but actual data is not computed. This allows rapid
scheduling, and hence, rapid evaluation of different mappings during the develop-
ment work. Applications are represented as public Standard Task Graph sets [81]
and Kahn Process Networks (KPNs) [37] generated with kpn-generator [46] with
varying level of optimizing difficulty. The graphs are selected to avoid bias for being
application specific, since optimal mapping algorithm depends on the graph topol-
ogy and weights for a given application. This Thesis tries to overcome this and find
general purpose mapping methods that are suitable to many types of applications.

Main focus is on Simulated Annealing as the optimization algorithm for task map-
ping. First, this Thesis analyzes the impact of SA parameters. Many publications
leave parameter selection unexplained, and often not documented. This harms at-
tempts of automatic exploration as manual tuning of parameters is required, which
is also error-prone due to humans. This motivates finding a systematic method for
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automatically selecting parameters.

Second, Thesis gives answers to global optimum convergence properties and the con-
vergence speed in terms of mapping iterations. Optimal solution for the task mapping
problem requires exponential time with respect to number of nodes in the task graph.
Spending more iterations to a solve a problem gives diminishing returns. The effec-
tiveness of an algorithm usually starts to dampen exponentially after some number
of iterations. These properties have not been examined carefully in task mapping
problems previously.

Third, the Thesis covers optimization of the run-time of mapping algorithms so that
a trade-off can be made between solution quality and algorithm’s execution time.

Following research questions are investigated:

1. How to select optimization parameters for a given point in problem space?

2. The convergence rate: How many iterations are needed to reach a given solu-
tion quality?

3. How does each parameter of the algorithm affect the convergence rate and
quality of solutions?

4. How to speedup the convergence rate? That is, how to decrease the run-time
of mapping algorithm?

5. How often does the algorithm converge to a given solution quality?

1.4 Summary of contributions

Task mapping in design space exploration often lacks systematic method that scales
with respect to the application and hardware complexity, i.e. the number of task nodes
and PEs. This Thesis presents a series of methods how to select parameters for a given
MPSoC. Developed methods are part of the DCS task mapper tool that was used
in Koski design flow [3] [38] [39]. Convergence rate is analyzed for our modified
Simulated Annealing algorithm. Also, a comparison is made between automatically
selected parameters and global optimum solutions. We are not aware of a global
optimum comparison that presents such detailed comparison. Presented methods are
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compared to other studies, that specifically use SA or other optimization method.
Their advantages and disadvantages are analyzed.

Summary of contributions of this Thesis are:

• Review of existing work on task mapping

• Development of task mapping methods including an automatic parameter se-
lection method for Simulated Annealing that scales up with respect to HW and
SW complexity. This is called Simulated Annealing with Automatic Tempera-
ture (SA+AT).

• Optimal subset mapping (OSM) algorithm

• Comparisons and analyses of developed methods including:

– Comparison of SA, OSM, Group Migration (GM) and Random Mapping
(RM) and GA

– Convergence analysis of SA+AT with respect to global optimum solution

– Comparison of SA+AT to published mapping techniques

• Tool development: DCS task mapper tool that is used to explore mapping al-
gorithms themselves efficiently

1.4.1 Author’s contribution to published work

The Author is the main author, contributor in all the Publications and the author of
DCS task mapper.

Tero Kangas helped developing ideas in [P1]-[P3].

Erno Salminen helped developing ideas in [P2]-[P7]. In particular, many important
experiments were proposed by him.

Professor Timo D. Hämäläinen provided highly valued insights and comments for
the research and helped to improve text in all the Publications.

Professor Marko Hännikäinen helped to improve text in [P3]-[P5].
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1.5 Outline of Thesis

Thesis is outlined as follows. Chapter 2 introduces design space exploration and con-
cepts relevant to task mapping. Chapter 3 presents related work for task mapping.
Chapter 4 presents the research questions, research method and results of Publica-
tions of the Thesis. Chapter 5 presents the DCS task mapper tool that was used
to implement experiments for the Thesis and publications. Chapter 6 presents new
results on SA convergence. SA is also compared with GA. Chapter 7 presents recom-
mendations for publishing about SA and using it for task mapping. Chapter 8 shows
the relevance of the Thesis. Chapter 9 presents conclusions and analyzes impact of
the Publications and Thesis.
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2. DESIGN SPACE EXPLORATION

2.1 Overview

Design space exploration (DSE) concerns the problem of selecting a design from the
problem space to reach desired goals in the objective space within a given time and
budget. Finding an efficient MPSoC implementation is a DSE problem where a com-
bination of HW and SW components are selected. HW/SW systems are moving to
more complex designs in which heterogeneous processors are needed for low power,
high performance, and high volume markets [86]. This complexity and heterogene-
ity complicates the DSE problem. Gries [30] presents a survey of DSE methods.
Bacivarov [4] presents an overview of DSE methods for KPNs on MPSoCs.

The problem space is a set of solutions from which the designer can select the design.
The selected design and its implementation manifests in measures of the objective
space such as power, area, throughput, latency, form factor, reliability, etc. Hence,
it is a multi-objective optimization problem. Pareto optimal solutions are sought
from the problem space [27]. A solution is pareto optimal if improving any objective
measures requires worsening some other. The best solution is selected from pareto
optimal solutions. An automatic deterministic selection method for the best solution
transforms the problem into a single objective problem. A manual selection requires
designer experience.

The problem space is often too large to test all the alternatives in the given time or
budget. For example, the task mapping problem has time complexity O(MN), where
M is the number of PEs and N is the number of tasks. Selection from problem space
may require compromises in objective space measures, e.g. power vs. throughput.
Objective space measures should be balanced to maximize the success of the final
product.

Graphics is often used to visualize alternative DSE methods and parameters. An
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Fig. 5. Evaluation of several mapping algorithms. Number of iterations and the resulting
application speedup are compared for each algorithm.

expert or heuristics selects a particular choice from the alternatives. For example,
Figure 5 shows a comparison of mapping algorithms from [P4] where the number
of mapping iterations is plotted against application speedup produced by each of the
algorithms. The expert may choose between fast and slow exploration depending on
whether coarse exploration or high performance is needed.

2.2 Design evaluation

There are at least four relevant factors for design evaluation of the problem space [30].
First, the time to implement the evaluation system is important. The evaluation sys-
tem itself can be difficult to implement. This may require implementing simulators
or emulators on various HW/SW design levels. This can be zero work by using an
existing evaluation system, or years of work to create a new one.

Second, the time to evaluate a single design point with a given evaluation system
places the limit on how many designs can be tested in the problem space. The method
for evaluating a single design point in the problem space is the most effortful part of
the DSE process. A single point can be evaluated with an actual implementation
or a model that approximates an implementation. A good overview of computation
and communication models is presented in [34]. Evaluation can be effortful which
means only a small subset of all possible solutions are evaluated. This often means
that incremental changes are made on an existing system; not creating a completely
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unique system. Finding a new design point can be as fast as changing a single integer,
such as changing a mapping of a single task. This could take a microsecond, where
as simulating the resulting circuit can take days. Therefore, testing a single design
point can be 1011 times the work of generating a new design point. Finding a new
design point can also be an expensive operation, such as finding a solution for a hard
constraint programming problem.

Third, the accuracy of the evaluation in objective space measures sets the confidence
level for exploration. Usually there is a trade-off between evaluation speed and accu-
racy. Evaluation accuracy is often unknown for anything but the physical implemen-
tation which is the reference by definition.

Fourth, automating the exploration process is important, but it may not be possible or
good enough. Implementation to a physical system is probably not possible without
manual engineering, unless heavy penalties are taken. For example, automatic testing
and verification of real-time properties and timing is not possible. Also, algorithms
and heuristics often miss factors that are visible to an experienced designer. The
grand challenge is to decrease manual engineering efforts as engineers are expensive
and prone to errors.

2.3 Design flow

Traditional SoC design flow starts by writing requirements and specifications. The
functionality of the specification is first prototyped in C or some other general pur-
pose programming language. A software implementation allows faster development
and testing of functional features than a hardware implementation. The prototype is
analyzed with respect to qualities and parameters of the program to estimate speed,
memory and various other characteristics of the system. For example, a parameteriz-
able ISS could be implemented in C to test functionality and estimate characteristics
of a processor microarchitecture being planned. When it is clear that correct func-
tionality and parameters have been found, the system is implemented with hardware
and software description languages. Parts of the original prototype may be used in
the implementation.

However, transforming the reference SW code into a complete HW/SW system is far
from trivial and delays in product development are very expensive. The biggest de-
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lays happen when design team discover faults or infeasible choices late in the design.
Automatic exploration reduces that risk by evaluating various choices early with less
manual effort. Although human workers are creative and can explore the design in
new ways, automated flow is many orders of magnitude faster in certain tasks. For
example, trying out a large set of different task mappings, frequencies, and buffer
sizes can be rather easily automated.

Automated SoC design tools does a series of transformations and analysis on the sys-
tem being designed. This covers both application and HW model. Application and
HW models must adhere to specific formalisms to support automated exploration.
Therefore, it’s necessary to raise the level of abstraction in design for the sake of
analysis and automated transformations, because traditional software and hardware
description languages are nearly impossible to analyze by automation. This has lead
to estimation methods based on simpler models of computation (MoC). The models
must capture characteristics of the system that are optimized and analyzed. Explo-
ration tools are limited to what they are given possibilities to change and see. This can
be very little or a lot. Minimally this means only a single bit of information. For the
sake of optimization, it would be useful to have a choice of multitude of application
and HW implementations.

2.3.1 Koski design flow

This Thesis presents DCS task mapper which is the mapping and scheduling part of
the static exploration method in Koski framework [39]. The overview and details of
the Koski DSE process is described in Kangas [38]. Koski framework uses a high-
level UML model and C code for the application, and a high-level UML model and a
library of HW components for the system architecture.

Application consists of finite state machines (FSMs) that are modeled with high-level
UML and C code. The HW platform is specified with the UML architecture model
and a library of HW components. The UML model, C code and HW components are
synthesized into an FPGA system [38] where the application is benchmarked and pro-
filed to determine its external behavior. The external behavior is defined by timings
of sequential operations inside processes and communication between processes. An
XSM model is then generated that contains the architecture, initial mapping and the
profiled application KPN. The code generation, profiling and physical implementa-
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tion is shown in Figure 6.
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Fig. 18. Code generation and functional verification.

4.5 Application Implementation and Verification

Application implementation and verification are based on the UML application model

and are carried out in four steps:automatic code generation, application build, func-

tional verification, and application profiling. The automatic code generation pro-

duces the source code including functionality and data types. In the application build,

the generated code is compiled and complemented with supporting libraries. The

functional verification is performed by simulating the application model only. The

application profiling is based on theexecution tracegathered during simulations. The

application implementation and verification, and its relation to the rest of Koski, are

depicted in Figure 18.

4.5.1 Automatic Code Generation

The application model is purely functional as the behavior of the application is de-

signed using state machines in active classes. Consequently, this enables automatic

code generation of the source code for conventional programming languages. In

Koski, Telelogic Tau G2 is used for C source codegeneration.

The code generation produces platform independent C code which implements all

Fig. 6. Koski design flow from code generation to physical implementation [38]

Figure 7 shows an example video encoder modeled as a KPN from [65]. A number
of slaves is run in parallel coordinated by a master process that orders slaves to en-
code parts of input picture. Each slave executes an identical KPN consisting of 21
computation tasks and 4 memory tasks. The system is simulated with Transaction
Generator [40] which is a part of the dynamic exploration method. Data transfers
between tasks that are mapped to separate PEs are forwarded to the communication
network. Execution times of processes and the size of inter-process messages are de-
termined by profiling the execution times on an instruction set simulator. Transaction
Generator is used to explore mappings and HW parameters of the system.

The XSM model is explored with static and dynamic exploration methods that are
used to optimize and estimate the system performance. The static and dynamic ex-
ploration methods are used as a two phase optimization method shown in Figure 8.
Static exploration does coarse grain optimization, it tries a large number of design
points in the problem space. The dynamic exploration method does fine-grain opti-
mization.

The extracted KPN is passed to static architecture exploration method for perfor-
mance estimation and analysis for potential parallelism for an MPSoC implementa-
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Fig. 7. Video encoder modelled as a KPN [65]

tion. Figure 9 shows the static exploration method as a diagram. The KPN, achitec-
ture and initial mapping are embedded in the XSM model. The KPN model is com-
posed of processes which consist of operations. Each process executes operations
whose timings were profiled with an FPGA/HW implementation. Three operations
are required for behavioral level simulation: read, compute and write operations.
Read operation reads an incoming message from another process. Compute opera-
tions keeps a PE busy for a given number of cycles. Write operation writes a message
of given size to a given process. Timing and data sizes of these operations capture the



2.3. Design flow 17
70 4. Koski Design Framework

Optimized XSMOptimized XSM

Original XSMOriginal XSM

Static
architecture 
exploration

Static
architecture 
exploration

Dynamic 
architecture 
exploration

Dynamic 
architecture 
exploration

ApplicationArchitecture
(initial)

Mapping
(initial)

Mapping
(initial)

Platform:
• Hardware
• Software
• Design 

automation

Architecture
(optimized)

Mapping
(optimized)

Mapping
(optimized)

Application
(unchanged)

Fig. 2 3. Theprincipleoftwo-phasearchitectureexploration.

4.7 ArchitectureExploration

Aftertheapplication, theinitialarchitecture, andthedesignconstraintsaremodeled

inUMLenvironment, thearchitectureexplorationtoolsstartoptimizingthesystem.

Explorationattemptstofindanoptimalselectionofplatformcomponentsandmap-

pingofthetasks. MappinginUMLenvironmentisnotrequiredbutitcanbeused

toguidethearchitectureexplorationtool. Ontheotherhand,themappingofatask

canbeindicatedasfixedintheinitialmapping,forexamplewhenmappingataskto

aHWaccelerator.

IntheKoskiflow,thearchitectureexplorationiscarriedoutintwophasesasshown

inFigure23. First,coarse-grainexplorationisperformedbystaticallyanalyzingthe

applicationmodel. Then, architecturesareexploredwithiterativesimulationsand

moreaccuratesystemmodels. Theoptimizationobjectiveistominimizetheresult

ofthecostfunctionthatthedesignerhasdefinedintheUMLdesignenvironment.

Thecontrol forthearchitectureexplorationisdescribedintheKoskiGUI.Theex-

ploration control parameters are mainly for restricting the iterations of the allocation,

mapping, and network parameter optimization. As the main focus in this Thesis is in

architecture exploration, the detailed presentation of this phase is given in Chapter 6.

Fig. 8. Two phase exploration method [38]
100 6. Koski Architecture Exploration

Static 
optimization

Static 
optimization

To dynamic
optimization

To dynamic
optimization

From UML 
interface
tools

From UML 
interface
tools

HW platform:
• Parameter-

ized HW

Mapping 

ApplicationArchitecture
(initial)

Allocation 
optimization 

Mapping
(initial)

Mapping
(initial)

XSM
XML

Optimized
XSMXML

Mapping
(candidate)

Schedule 
(candidate)

Scheduling 

Architecture
(candidate)

chosen candidates

Fig. 38. Static method of the architecture exploration.

tem determines an estimate for the execution time from an allocation-mapping pair.

As the optimization algorithms are not in central role in this Thesis, only a hybrid

algorithm of SA and GM are introduced in this section. SA and GM algorithms

complement each others by combining the good properties of non-greedy global and

greedy local optimization techniques. SA can climb from a local minima to reach a

global minimum. The GM algorithm is used to locally optimize SA solutions as far

as possible.

Figure 39 shows the pseudo-code for SA. This implementation of the algorithm has

all possible mappings of the application as the state space. The algorithm has a spe-

cial task graph heuristics to move in the state space. One state (i.e. allocation or

mapping) is denoted withS. The SA temperatureT reflects the speed and size of

changes per each move. First, the cost associated with initial mapping is calculated

with thecost function. The parameters for the cost function were described in Sec-

tion 4.4.4. The objective is to minimize the costs.

Inside the optimization loop, the next mapping is determined with heuristicmove

function and associated costs are calculated. If the new mapping results in lower

costs, it is chosen as a base for the next iteration. Otherwise, the best mapping so

far is used. The algorithm always accepts improving moves, but it can avoid local

Fig. 9. Static exploration method [38]

parallel and distributed behavior of the application. This application model allows or-
ders of magnitude faster exploration than a cycle-accurate ISA simulation or a circuit
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model. For example, in our work evaluating a single design point in a 4 PE and 16
node KPN design took approximately 0.1ms as a behavioral model that schedules all
computation and communication events on the time line. A circuit level model of the
system could take days or weeks to simulate. Behavior level simulation is explained
in Chapter 5.

The model is then further optimized with more accuracy in the dynamic architecture
exploration phase. Optimization results from the static method are used as the initial
point for the dynamic method. Specific parameters of HW system are optimized
in this phase. The communication network (HIBI) and the KPN is modeled and
simulated as a cycle accurate SystemC model. A transaction generator is used to
generate events for the simulator based on the application embedded inside the XSM
model. The mapping algorithms of DCS task mapper are also re-used in the dynamic
exploration phase.

Finally, the solutions from exploration are analyzed, and the best solution is selected.
This usually requires engineering experience. The best system is delivered for the
back-end process to be implemented.

The inaccuracy of the static and dynamic exploration methods needs to be evaluated.
A risk margin is a multiplier that is defined as the upper bound for the ratio of im-
plemented and estimated cost of the system. A risk margin of 1 would be desirable,
but implementation complexity raises the margin to a higher value. Parameters that
make up the accuracy of estimation model are initially based on system specifica-
tions, designer experience and crude testing and benchmarking on existing HW/SW
implementations. Therefore, the risk margin must be determined experimentally. Fi-
nal estimates of the parameters can be determined by fine-tuning with some manual
effort. Manual effort was to be avoided, but it allows exploration tool to be more
efficient. Exploration tool is useful as long as it saves total engineering time.

Kangas [38] (p. 102) estimated the error of static and dynamic exploration methods
for a video encoder application. The static method gave an estimation error of less
than 15% and the dynamic method gave an error less than 10%. Timing profile
was obtained with by profiling a synthesized FPGA system, and these timings were
inserted into the application model.



3. RELATED WORK

This chapter investigates the use of Simulated Annealing in task mapping. We ana-
lyze the research question of how to select SA optimization parameters for a given
point in DSE problem space. We present a survey of existing state-of-the-art in SA
task mapping.

3.1 Simulated Annealing algorithm

SA is a widely used metaheuristic for complex optimization problems. It is a proba-
bilistic non-greedy algorithm that explores the search space of a problem by anneal-
ing from a high to a low temperature. Temperature is a historic term originating from
annealing in metallurgy where material is heated and cooled to increase the size of its
crystals and reduce their effects. Temperature indicates the algorithm’s willingness
to accept moves to a worse state. Probabilistic behavior means that SA can find so-
lutions of different goodness between runs. Non-greedy means that SA may accept
a move into a worse state, and this allows escaping local minima. The algorithm
always accepts a move into a better state. Move to a worse state is accepted with
a changing probability. This probability decreases along with the temperature, and
thus the algorithm starts as a non-greedy algorithm and gradually becomes more and
more greedy.

Figure 10 shows the SA pseudocode. The algorithm takes initial temperature T0 and
initial state S as a parameters. Cost function evaluates the objective function to be
optimized. Temperature function returns the annealing temperature as a function of
T0 and loop iteration number i. Move functions generates a new state from a given
state. Random function returns a random real number in range [0,1). Accept func-
tion returns True iff a state change with cost function difference ∆C > 0 should be
accepted. End-Condition function returns True iff optimization should be termi-
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nated. Parameters of the end conditions are not shown in the pseudocode. These may
include measures such as the number of consecutive rejected moves, current and a
given final temperature, current and accepted final cost. Finally the algorithm returns
the best state Sbest in terms of the Cost function.

SIMULATED ANNEALING(S,T0)

1 C← COST(S)
2 Sbest ← S
3 Cbest ←C
4 for i← 0 to ∞

5 do T ← TEMPERATURE(T0, i)
6 Snew←MOVE(S,T )
7 Cnew← COST(Snew)

8 ∆C←Cnew−C
9 if ∆C < 0 or RANDOM()< ACCEPT(∆C,T )

10 then if Cnew <Cbest

11 then Sbest ← Snew

12 Cbest ←Cnew

13 S← Snew

14 C←Cnew

15 if END-CONDITION()
16 then break
17 return Sbest

Fig. 10. Pseudocode of the Simulated Annealing (SA) algorithm

3.2 SA in task mapping

Table 1 shows SA usage for 14 publications, each of which are summarized be-
low. All publications apply SA for task mapping, five publications use SA for task
scheduling, and one for communication routing. None uses SA simultaneously for
all purposes. There are many more publications that use different methods for task
mapping, but they are outside the scope of this Thesis. Synthetic task mapping means
the paper uses task graphs that are not directed toward any particular application, but
benchmarking the mapping algorithms.
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Table 1. Table of publications and problems where Simulated Annealing is applied. Task
mapping with SA is applied in a publication when “Mapping sel.” column is “Y”.
Task scheduling and communication routing with SA is indicated similarly with
“Sched. sel.” and “Comm. sel.” columns, respectively. All 14 publications apply
SA to task mapping in this survey, five to task scheduling, and one to communication
routing.

Mapping Sched. Com. Application
Paper sel. sel. sel. field

Ali [2] Y N N QoS in multisensor
shipboard computer

Bollinger [8] Y N Y Synthetic task mapping
Braun [9] Y N N Batch processing tasks
Coroyer [20] Y Y N Synthetic task mapping
Ercal [24] Y N N Synthetic task mapping
Ferrandi [25] Y Y N C applications partitioned with

OpenMP: Crypto, FFT, Image
decompression, audio codec

Kim [43] Y Y N Synthetic task mapping
Koch [45] Y Y N DSP algorithms
Lin [56] Y N N Synthetic task mapping
Nanda [58] Y N N Synthetic task mapping
Orsila [P7] Y N N Synthetic task mapping
Ravindran [61] Y Y N Network processing:

Routing, NAT, QoS
Wild [85] Y N N Synthetic task mapping
Xu [88] Y N N Artificial intelligence:

rule-based expert system

# of publications 14 5 1
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Ali [2] optimizes performance by mapping continuously executing applications for
heterogeneous PEs and interconnects while preserving two quality of service con-
straints: maximum end-to-latency and minimum throughput. Mapping is optimized
statically to increase QoS safety margin in a multisensor shipboard computer. Tasks
are initially mapped by a fast greedy heuristics, after which SA further optimizes
the placement. SA is compared with 9 other heuristics. SA and GA were the best
heuristics in comparison. SA was slightly faster than GA, with 10% less running
time.

Bollinger [8] optimizes performance by mapping a set of processes onto a multipro-
cessor system and assigning interprocessor communication to multiple communica-
tion links to avoid traffic conflicts. The purpose of the paper is to investigate task
mapping in general.

Braun [9] optimizes performance by mapping independent (non-communicating) gen-
eral purpose computing tasks onto distributed heterogeneous PEs. The goal is to exe-
cute a large set of tasks in a given time period. An example task given was analyzing
data from a space probe, and send instructions back to the probe before communica-
tion black-out. SA is compared with 10 heuristics, including GA and TS. GA, SA
and TS execution times were made approximately equal to compare effectiveness of
these heuristics. GA mapped tasks were 20 to 50 percent faster compared to SA. Tabu
mapped tasks were 50 percent slower to 5 percent faster compared to SA. SA was run
with only one mapping per temperature level, but repeating the annealing process 8
times for two different temperature coefficients. One mapping per temperature level
means insufficient number of mappings for good exploration. However, GA is better
with the same number of mappings. GA gave the fastest solutions.

Coroyer [20] optimizes performance excluding communication costs by mapping and
scheduling DAGs to homogeneous PEs. 7 SA heuristics are compared with 27 list
scheduling heuristics. SA results were the best compared to other heuristics, but SA’s
running time was two to four orders of magnitude higher than other heuristics. The
purpose of the paper is to investigate task mapping and scheduling in general.

Ercal [24] optimizes performance by mapping DAGs onto homogeneous PEs and
a network of homogeneous communication links. Load balancing constraints are
maintained by adding a penalty term into the objective function. Performance is
estimated with a statistical measure that depends on task mapping, communication
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profile of tasks and the distance of communicating tasks on the interconnect network.
Simulation is not used. The model assumes communication is Programmed IO (PIO)
rather than DMA. SA is compared with a proposed heuristics called Task Allocation
by Recursive Mincut. SA’s best result is better than the mean result in 4 out of 7 cases.
Running time of SA is two orders of magnitude higher than the proposed heuristics.

Ferrandi [25] optimizes performance by mapping and scheduling a Hierarchical Task
Graph (HTG) [26] onto a reconfigurable MPSoC of heterogeneous PEs. HTGs were
generated from C programs parallelized with OpenMP [70]. SA is compared with
Ant Colony Optimization (ACO) [23], TS and a FIFO scheduling heuristics com-
bined with first available PE mapping. SA running time was 28% larger than ACO
and 12% less than TS. FIFO scheduling heuristics happens during run-time. SA gives
11% worse results (performance of the solution) than ACO and comparable results
with TS.

Kim [43] optimizes performance by mapping and scheduling independent tasks that
can arrive at any time to heterogeneous PEs. Tasks have priorities and soft deadlines,
both of which are used to define the performance metric for the system. Dynamic
mapping is compared to static mapping where arrival times of tasks are known ahead
in time. SA and GA were used as a static mapping heuristics. Several dynamic
mapping heuristics were evaluated. Dynamic mapping run-time was not given, but
they were very probably many orders of magnitude lower than static methods because
dynamic methods are executed during the application run-time. Static heuristics gave
noticeably better results than dynamic methods. SA gave 12.5% better performance
than dynamic methods, and did slightly better than GA. SA run-time was only 4% of
the GA run-time.

Koch [45] optimizes performance by mapping and scheduling DAGs presenting DSP
algorithms to homogeneous PEs. SA is benchmarked against list scheduling heuris-
tics. SA is found superior against other heuristics, such as Dynamic Level Scheduling
(DLS) [78]. SA does better when the proportion of communication time increases
over the computation time, and the number of PEs is low.

Lin [56] optimizes performance while satisfying real-time and memory constraints
by mapping general purpose synthetic tasks to heterogeneous PEs. SA reaches a
global optimum with 12 node graphs.

Nanda [58] optimizes performance by mapping synthetic random DAGs to homoge-
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neous PEs on hierarchical buses. The performance measure that is optimized is an
estimate of expected communication costs and loss of parallelism with respect to crit-
ical path (CP) on each PE. Schedule is obtained with list scheduling heuristics. Two
SA methods are presented where the second one is faster in run-time but gives worse
solutions. The two algorithms reach within 2.7% and 2.9% of the global optimum
for 11 node graphs.

Ravindran [61] optimizes performance by mapping and scheduling DAGs with re-
source constraints on heterogeneous PEs. SA is compared with DLS and a decom-
position based constraint programming approach (DA). DLS is the computationally
most efficient approach, but it loses to SA and DA in solution quality. DLS runs in
less than a second, while DA takes up to 300 seconds and SA takes up to 5 seconds.
DA is an exact method based on constraint programming that wins SA in solution
quality in most cases, but is found to be most viable for larger graphs where con-
straint programming fails due to complexity of the problem space.

Wild [85] optimizes performance by mapping and scheduling DAGs to heterogeneous
PEs. PEs are processors and accelerators. SA is compared with TS, FAST [49] [50]
and a proposed Reference Constructive Algorithm (ReCA). TS gives 6 to 13 percent,
FAST 4 to 7 percent, and ReCA 1 to 6 percent better application execution time than
SA. FAST is the fastest optimization algorithm. FAST is 3 times as fast than TS for
100 node graphs and 7 PEs, and 35 times as fast than SA. TS is 10 as fast as SA.

Xu [88] optimizes performance of a rule-based expert system by mapping dependent
production rules (tasks) onto homogeneous PEs. A global optimum is solved for the
estimate by using linear programming (LP) [57]. SA is compared with the global
optimum. SA reaches within 2% of the global optimum in 1% of the optimization
time compared to LP. The cost function is a linear estimate of the real cost. In this
sense the global optimum is not real.

3.3 SA parameters

Table 2 shows parameter choices for the previous publications. Move and acceptance
functions, and annealing schedule, and the number of iterations per temperature level
was investigated, where N is the number of tasks and M is the number of PEs. “N/A”
indicates the information is not available. “DNA” indicates that the value does not
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Table 2. Simulated Annealing move heuristics and acceptance functions. “Move func.” indi-
cates the move function used for SA. “Acc. func” indicates the acceptance proba-
bility function. “Ann sch.” indicates the annealing schedule. “q” is the temperature
scaling co-efficient for geometric annealing schedules. “T0 ada.” means adaptive
initial temperature selection. “Stop ada.” means adaptive stopping criteria for op-
timization. “L” is the number of iterations per temperature level, where N is the
number of tasks and M is the number of PEs.

Move Acc. Ann. T0 Stop
Paper func. func. Sch. q ada. ada. L

Ali [2] ST, SW1 E G 0.99 N N 1
Bollinger [8] MBOL N/A B DNA Y N/A N(N−1)/2
Braun [9] ST IE G 0.8, 0.9 Y N 1
Coroyer [20] ST, P1 E G, F 0.95 Y Y N(M−1)
Ercal [24] ST E G 0.95 Y N 5N(M−1)
Ferrandi [25] ST, P4 E G 0.99 N N LFE
Kim [43] ST, SW1, P3 E G 0.99 N N 1
Koch [45] Koch E K DNA Y Y N
Lin [56] MLI E G 0.8 Y Y LLI
Nanda [58] ST, SW2 E G 0.9 N N 5000
Orsila [P7] ST NIE G 0.95 Y Y N(M−1)
Ravindran [61] H1 E K DNA N Y N/A
Wild [85] ST, EM N/A G N/A N/A Y N/A
Xu [88] SW1 E G 0.5 Y Y N

Most common ST E G 0.95 Y N -

apply to a particular publication. Detailed explanation of parameters is presented in
Sections 3.3.1, 3.3.2 and 3.3.3.

3.3.1 Move functions

Table 2 shows 11 move functions applied in the publications.

Single Task (ST) move takes one random task and moves it to a random PE. It is the
most common move heuristics, 9 out of 14 publications use it. It is not known how
many publications exclude the current PE from solutions so that always a different PE
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is selected by randomization. Excluding the current PE is useful because evaluating
the same mapping again on consecutive iterations is counterproductive.

EM [85] is a variation of ST that limits task randomization to nodes that have an
effect on critical path length in a DAG. The move heuristics is evaluated with SA
and TS. SA solutions are improved by 2 to 6 percent, TS solutions are not improved.
Using EM multiplies the SA optimization time by 50 to 100 times, which indicates it
is dubious by efficiency standards. However, using EM for TS approximately halves
the optimization time!

Swap 1 (SW1) move is used in 3 publications. It chooses 2 random tasks and swaps
their PE assignments. These tasks should preferably be mapped on different PEs.
MBOL is a variant of SW1 where task randomization is altered with respect to an-
nealing temperature. At low temperatures tasks that are close in system architecture
are considered for swapping. At high temperatures more distant tasks are considered.

Priority move 4 (P4) is a scheduling move that swaps the priorities of two random
tasks. This can be viewed as swapping positions of two random tasks in a task per-
mutation list that defines the relative priorities of tasks. P1 is a variant of P4 that
considers only tasks that are located on the same PE. A random PE is selected at first,
and then priorities of two random tasks on that PE are swapped. P3 scheduling move
selects a random task, and moves it to a random position in a task permutation list.

Hybrid 1 (H1) is a combination of both task assignment and scheduling simultane-
ously. First ST move is applied, and then P3 is applied to the same task to set a
random position on a permutation list of the target PE. Koch [45] is a variant of H1
that preserves precedence constraints of the moved task in selecting the random po-
sition in the permutation of the target PE. That is, schedulable order is preserved in
the permutation list.

MLI is a combination of ST and SW1 that tries three mapping alterations. First, tries
ST greedily. The move heuristics terminates if the ST move improves the solution,
otherwise the move is rejected. Then SW1 is tried with SA acceptance criterion. The
move heuristics terminates if the acceptance criterion is satisfied. Otherwise, ST is
tried again with SA acceptance criterion.

ST is the most favored mapping move. Heuristics based on swapping or moving
priorities in the task priority list are the most favored scheduling moves. The choice
of mapping and scheduling moves has not been studied thoroughly.
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3.3.2 Acceptance functions

Table 2 shows acceptance functions for the publications. Acceptance function takes
the change in cost ∆C and temperature T as parameters. There are 3 relevant cases to
decide whether to accept or reject a move. The first case ∆C < 0 is trivially accepted.
The second case ∆C = 0 is probabilistically often accepted. The probability is usually
0.5 or 1.0. The third case ∆C > 0 is accepted with a probability that decreases when
T decreases or ∆C grows.

Exponential acceptor function (E)

Accept(∆C,T ) = exp(
−∆C

T
). (1)

is the most common choice. Orsila [P7] uses the normalized inverse exponential
function (NIE)

Accept(∆C,T ) =
1

1+ exp( ∆C
0.5C0T )

. (2)

where T is in normalized range (0,1] and C0 is the initial cost. Inverse exponential
function is also known as the negative side of a logistic function f (x) = 1

1+exp(−x) .
Braun [9] uses an inverse exponential function (IE)

Accept(∆C,T ) =
1

1+ exp(∆C
T )

. (3)

where T0 is set to C0. Temperature normalization is not used, but the same effect is
achieved by setting the initial temperature properly.

Using an exponential acceptor with normalization and a proper initial temperature
is the most common choice. This choice is supported by the experiment in Sec-
tion 6.2.1.

3.3.3 Annealing schedule

Table 2 shows annealing schedules for the publications. The annealing schedule is
a trade-off between solution quality and optimization time. The annealing sched-
ule defines the temperature levels and the number of iterations for each temperature
level. Optimization starts at the initial temperature T0 and ends at final temperature
Tf . These may not be constants, in which case initial temperature selection and/or
stopping criteria are adaptive. Stopping criteria defines when optimization ends.



28 3. Related work

Geometric temperature scale (G) is the most common annealing schedule. Temper-
ature T is multiplied by a factor q ∈ (0,1) to get the temperature for the next level.
That is, Tnext = qT . Usually several iterations are spent on a given temperature level
before switching to the next level. q is most often 0.95 or 0.99 in literature. Some
works use q = 0.9 that is also used by Kirkpatrick [44] that presented SA. They used
SA for partitioning circuits to two chips. This is analogous to mapping tasks onto
two PEs.

Bollinger [8], denoted B, computes a ratio R of minimum cost to average cost on
a temperature level, and then applies a geometric temperature multiplier Tnext =

min(R,qL)T , where qL is an experimentally chosen lower bound for the temperature
multiplier. qL varied in range [0.9,0.98].

Ravindran [61] and Koch [45], denoted K, use a dynamic q factor that depends on the
statistical variance of cost at each temperature level. The temperature is calculated
with

Tnext =
T

1+ T ln(1+δ)
3σT

(4)

where δ is an experimental parameter used to control the temperature step size and
σT is the standard deviation of cost function on temperature level T . Higher δ or
lower σT means a more rapid decrease in temperature. Koch suggests δ in range
[0.25,0.50].

Coroyer [20] experimented with a fractional temperature scale (F). Temperature T is
calculated as Ti =

T0
i where T0 is the initial temperature and i is the iteration number

starting from 1. Fractional temperature was found to be worse than geometric.

The normalized exponential acceptor

Accept(∆C,T ) = exp(
−∆C

0.5C0T
) (5)

and the normalized inverse exponential acceptor (2) put T0 to a range (0,1] where
initial acceptance probabilities are adjusted to the initial cost.

The choice of initial temperature T0 can be chosen experimentally or methodically.
[P2] [P6] [P7] [9] [8] [20] [24] [45] [56] [88] present methods to set T0 based on
given problem space characteristics and desired acceptance criteria for moves. [P2]
[P6] [P7] determine T0 from the task graph and the system architecture. T0 can be
set purely based on simulation so that T0 is raised high enough so that average move
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acceptance probability p is high enough for aggressive statistical sampling of the
problem space [20] [45]. Often p∼ 0.9.

There are several common stopping criteria. Optimization ends when a given Tf has
been reached [20] [45], a given number of consecutive rejections happen, a given
number of consecutive moves has not improved the solution, a given number of
consecutive solutions are identical [20], or a solution (cost) with given quality is
reached [45]. These criteria can also be combined. Constants associated with these
criteria are often decided experimentally, but adaptive solutions exist too. [P2] [P6]
[P7] use a Tf that is computed from problem space.

The number of iterations per temperature level L is defined as an experimental con-
stant or a function of the problem space. A function of the problem space is more
widely applicable, but a constant can be more finely tuned to a specific problem. L is
often dependent on N and M. Ercal [24] proposes L that is proportional to N(M−1),
the number of neighboring solutions in the mapping space. Publications in this Thesis
use the same principle.

Lin [56] uses an adaptive number of iterations per temperature level (LLI). Their
approach starts with L0 = N ∗ (N + M) for T0. The number of iterations for the
next temperature level is calculated by Lnext = min(1.1L,N(N + M)2). However,
on each temperature level they compute an extra X −L iterations iff X > L, where
X = 1

exp((Cmin−Cmax)/T ) and Cmin and Cmax are the minimum and maximum costs on
the temperature level T . They compute initial temperature as T0 = a+ b, where a
is the maximum execution cost of any task at any PE, and b is the maximum com-
munication cost between any two tasks. Then they compute T0 average and standard
deviation of cost at T0 by sampling a number of moves. The temperature is doubled
(once) if the minimum and maximum cost is not within two standard deviations from
the average.

Ferrandi [25] has adaptive number of iterations per temperature level (LFE). Temper-
ature level is switched on the first accepted on the temperature level. However, there
can be arbitrarily many rejected moves.
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4. PUBLICATIONS

This chapter presents the problem space, research questions and contributions for
Publications [P1-P7].

4.1 Problem space for Publications

Publications for this Thesis focus on mapping N tasks to M PEs, where tasks are
interdependent general purpose computational tasks which can be executed in a finite
time, i.e. the tasks are guaranteed to terminate within a specific time.

Applications in [P1-P6] are directed acyclic task graphs (DAGs), which are a special
case of KPNs. The graphs were obtained from Standard Task Graph (STG) collec-
tion [81]. Scheduling is done with the longest path heuristics, which defines task
priority to be the longest path from a node to its exit nodes. The longest path is also
called the critical path. Nodes on the critical path are scheduled first. Applications
are KPNs in [P7]. FIFO scheduling is used for KPN tasks. Tasks get scheduled in
the order they become ready. Cycle costs for operations and communication message
sizes are embedded directly into DAG and KPN models.

PEs are general purpose processors. PEs are homogeneous in [P1-P4, P6-P7], and
heterogeneous in [P5]. PEs are connected with one or more communication links that
each have a given throughput, latency and arbitration latency.

Execution time is a part of the objective space in all publications. [P3] also consid-
ers memory consumption due to communications buffering. [P5] considers energy
consumption with given silicon area constraints in the problem space.
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Table 3. Scope of publications based on optimization criteria and research questions
P1 P2 P3 P4 P5 P6 P7

Optimized variables
Exec. time × × × × × × ×

Memory ×
Area/energy ×

Multi-objective ×
Mapping algorithm

Convergence rate analysis × × × × ×
Run time optimized × × × ×

Global optimum comparison ×
Research questions analyzed

1. Parameter selection in a DSE point × × × × × ×
2. Number of mappings and convergence ×

3. Parameters and convergence × × × × ×
4. How to speedup convergence × × × ×

5. Converge rate ×

4.2 Research questions

The contribution of the Thesis is systematic analysis of the five research questions
presented in Section 1.3.

Table 3 shows the scope of publications based on optimization criteria and research
questions.

First research question How to select optimization parameters for a given point in
DSE problem space? Parameter selection should factor in complexity which is de-
fined by a given design point in the problem space. E.g. more PEs or tasks should
imply more iterations for the algorithm to explore a sufficient part of the implemen-
tation space. It may also be that successful optimization is not a result of sufficient
number of iterations, but entirely a different strategy is needed for different points in
the problem space. A single set of parameters should not be used for multiple points
in the problem space that have different complexities. Optimization effort is then
wasted for simpler problems, but too little effort is used for more complex problems.
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To find results we analyzed the effect of parameter selection for varying problem
complexity. The benefit of mapping iterations versus problem complexity is weighed.
Reliability of the methods was tested with small graphs, and scalability with larger
graphs.

Second research question How many mapping iterations are needed to reach a given
solution quality? The problem is NP-complete [59], and the difficulty of problem
varies with respect to application and HW complexity. The global optimum is usually
not known, and therefore, is not known either how far a given solution is from the
optimum. This makes termination criteria for optimization hard to decide. A very
fast evaluation cycle is needed to find global optimum solutions for even a simple
and very constrained HW/SW system.

We examined the mapping iterations versus solution quality by obtaining global op-
timum solutions for small graphs and simple HW systems by brute force search.

Third research question How does each parameter of the algorithm affect the con-
vergence rate? Each parameter may have a different effect depending on the point in
problem space. Parameters can be compared with each other by altering them in the
same point in problem space.

To find results we analyzed optimization convergence rate based on the effect of ini-
tial and final temperature, the number of mapping iterations per temperature level,
different SA acceptance functions and the zero transition probability of the accep-
tance function.

Fourth research question How to speedup convergence rate? That is, how to de-
crease the run-time of mapping algorithm? Lot of the optimization can be ineffective.
Effect of past optimization can be undone by later stages of optimization by changing
the same or related task mappings obtained before.

We found out a way to compute initial and final temperatures to speed up optimiza-
tion. Also, Optimal Subset Mapping algorithm is presented that converges rapidly.

Fifth research question How often does the algorithm converge to a given solution
quality? Many combinatorial optimization algorithm, such as SA, rely on probabilis-
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tic chance. Some estimates are needed how many times a probabilistic algorithm
needs to be run to obtain a solution of given quality.

To increase reliability of our results we applied the methods on both small and large
graphs. Small graphs and small number of PEs was exploited to obtain a global
optimum comparison. Global optimum results give us an absolute reference on the
convergence rate of the algorithms. For example, a method may converge within 5%
of the global optimum solution in 10% of the optimization runs.

4.3 Hybrid Algorithm for Mapping Static Task Graphs on Multiprocessor
SoCs

[P1] proposes a Hybrid Algorithm (HA) to automatically distribute task graphs onto
a multiprocessor system to speedup execution. Research question 1 is analyzed. The
multiprocessor system had 2, 3 or 4 PEs connected with a shared bus, but no shared
memory. Message passing was used to carry out computation in parallel.

The Hybrid Algorithm is a combination of three algorithms: Fast Pre-mapping (FP),
GM and SA. FP is used initially to place tasks tasks rapidly on separate processors.
FP automatically places children of a task graph node to separate PEs to rapidly start
with a parallel solution. This is not intended to be a good solution. The idea is to
exploit trivial parallelism in the beginning of optimization to save mapping iterations.
SA and GM are used after FP. SA and GM are used for global search, and GM is used
for local search. The algorithm start with a full annealing temperature range, and iter-
atively run SA by halving the initial temperature but keep the final temperature fixed.
The SA would become finer grained on each iteration, because its initial temperature
would be greedier on each iteration. GM is run after each SA iteration to optimize
easy task placements with a greedy local search method. Iterating the process would
repeatedly find better and better solutions. The best solution seen during the process
would be returned.

HA is not efficient because the SA’s final temperature is set too low so that greedy
optimization has already happened before GM is used. Therefore, GM is not needed.
GM could be useful if it were the case that SA stopped before it got greedy. That is,
the final temperature of SA would have to be higher.

The only real practical approach in this algorithm was to use SA by running it itera-
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tively, and return the best result seen from all iterations. This could have been done
without initial temperature adjustments, although halving the initial temperature at
each iteration could be a heuristics for determining how many times to run the SA
before stopping. This algorithm was shown to be wasteful in terms of optimization
iterations in [P4].

It was later discovered that the experiment failed because there was insufficient num-
ber of mapping iterations per SA optimization. There was too few iterations per
temperature level, and the final temperature was too high. SA would not converge on
a good solution for these reasons. Also, there was a possibility of premature termina-
tion before the final temperature. This showed us that manual parameter selection is
error-prone, and the failure motivated us to devise methods for automatic parameter
selection. SA+AT was created for this reason.

4.4 Parameterizing Simulated Annealing for Distributing Task Graphs on
multiprocessor SoCs

[P2] proposes SA+AT method that automatically parameterizes SA. Research ques-
tions 1, 3 and 4 are analyzed. The presented method decreases optimization time
and increases application speed. A trade-off is made between optimization time and
optimized execution time. The goal is to find a reliable optimization method that tries
to search broad regions in the problem space, but also focus on the attractive parts of
the space with more effort. This requires a careful annealing schedule, and possibly
several independent runs of the algorithm. The method saved 50% of optimization
time in an experiment by only marginally slowing down the application.

The method takes the basic philosophy that the number of iterations and the tem-
perature range is determined by the structure of the given application and hardware
architecture. The more complex the application or hardware the more iterations are
needed to converge to a good mapping reliably. Exponential time algorithms are
directly rejected so that the method can be applied for large problems.

The method parameterizes SA by looking at the number of PEs and tasks, and task
execution times on PEs. The method scales up with problem space complexity. The
number of mappings per temperature level is set with respect to the number of PEs
and tasks. The number of temperature levels is based on task execution times on PEs.
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The PEs can be heterogeneous which affects the number of temperature levels.

The annealing schedule is defined by the number of iterations per temperature level
L, initial and final temperatures, and the coefficient q that defines a geometric tem-
perature schedule.

Transition probability is defined so that transition probabilities occur within an effec-
tive range, and the temperature range is normalized into (0,1]. The method needs a
value for the k variable, which determines a safety margin for initial and final tem-
perature. Using k = 2 has been found sufficient, if not overly paranoid, in our papers.

A method is proposed to determined initial and final temperatures based on task ex-
ecution times relative to application execution time on fastest and slowest processor.
Initial temperature selection is not crucial in the sense that overestimation leads to
excessive optimization time, but does not make the final solution bad. The proposed
method sets initial temperature high enough so that optimization effort is not wasted
for slowly converging chaotic random moves. Final temperature Tf selection is cru-
cial, however. Too high Tf means greedy optimization opportunities are lost so that
possible local minima are not found. Too low Tf means optimization time is wasted
in a local minimum that does not converge anywhere else.

L is chosen to be N(M−1) and compared to different values with respect to applica-
tion speedup. It is found that the given choice is appropriate for 300 task graphs with
2 to 8 processors.

The method is tested with 10 random graphs (DAGs) with 50 nodes and 10 random
graph with 300 nodes. The number of PEs is 2 to 8. The method is able to predict an
efficient annealing schedule for the problem. The number of optimization iterations
is halved but optimized application’s execution time is increased only marginally.

4.5 Automated Memory-Aware Application Distribution for
Multi-Processor System-On-Chips

[P3] proposes a method for optimizing memory consumption and execution time
of a task graph running on an MPSoC. Research questions 1 and 3 are analyzed.
Parallelism is needed to speedup execution, but parallelism also increases memory
consumption. The optimization algorithm uses an objective function that penalizes
memory consumption and execution time.
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Memory consumption is optimized for three kinds of buffers: First, temporary results
that are stored on a PE waiting to be re-used on the same PE and then discarded.
Second, temporary results that are stored on a PE waiting to be sent to another PE
and then discarded. Third, input data from other PEs that is still being used by the
PE.

SA, GM and RM algorithms are used to optimize two separate objective functions.
The time-objective objective is used to optimize execution time. The memory-time
objective is used to optimize both memory consumption and execution time.

The time-objective yields 2.12 speedup on average for SA, but also increases mem-
ory consumption by 49%. The memory-time objective yields 1.63 speedup without
increase in memory consumption. The trade-off is 23% slower but 33% less memory.

The memory consumption trade-off is achieved by using the memory-time objective
and adjusting the mapping by SA. Further memory savings would be possible by
adjusting the schedule of the executed task graph to minimize the life-span of each
intermediate result. But it is beyond the scope of the paper.

4.6 Optimal Subset Mapping And Convergence Evaluation of Mapping
Algorithms for Distributing Task Graphs on Multiprocessor SoC

[P4] proposes a fast mapping method called Optimal Subset Mapping (OSM). Re-
search questions 1, 3 and 4 are analyzed. OSM is a divide and conquer [21] method
that assumes that different parts of the problem can be optimized separately that
would make the solution converge towards a global optimum. This assumption is
not valid for task mapping, but it can be a good strategy for other problems.

OSM takes a random subset of tasks and finds the optimum mapping in that subset
by trying all possible mappings (brute force search). This process is repeated by
decreasing and increasing the subset size within reasonable complexity limits. OSM
is probabilistic because it chooses the subset randomly. It is also greedy because it
only accepts an improvement to the best known solution at each round.

OSM is compared with GM, HA, SA, SA+AT and RM. OSM was the most efficient
algorithm with respect to speedup divided by the number of iterations, but the abso-
lute speedup was lower than with GM, HA, SA and SA+AT. OSM can be used as a
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starting point for a large optimization task because it converges rapidly. SA+AT is
the best algorithm overall. RM sets the baseline for all comparisons. Any algorithm
should do better than random mapping when systematic optimization opportunities
exist in the problem space. GM, OSM, SA and SA+AT do much better than RM.

The algorithms were evaluated with a mapping that has 300 node random task graphs
and 2, 4 and 8 PEs. OSM converges very rapidly initially. Convergence characteris-
tics of OSM and GM are quite the opposite to each other, while the SA+AT method
[P2] is in the middle. OSM loses against GM, SA and SA+AT in application speedup.
On possible strategy to use OSM would be to start with OSM and switch to SA+AT
when OSM does not increase the speedup anymore.

4.7 Evaluating of Heterogeneous Multiprocessor Architectures by Energy
and Performance Optimization

[P5] analyzes a trade-off between energy consumption and performance among het-
erogeneous MPSoCs. Pareto optimums are selected from a cloud of MPSoC candi-
dates whose number of PEs and types of PEs varies with respect to performance, area
and power.

Task graphs were distributed onto a set of architecture, each architecture consisting
of heterogeneous PEs. 141 architectures were tested with 10 graphs that each have
300 nodes.

Energy consumption was estimated with static and dynamic energy parameters for
3 cases: without dynamic energy (constant power), with little dynamic power, and
with more dynamic power. Well performing architectures were mostly the same in
all cases. From low, medium and high speed PEs, the medium speed PEs were most
power-efficient in the experiment.

Results from the experiment showed that SA method presented in [P2] shows good
convergence properties for heterogeneous architectures too. The earlier paper used
homogeneous PEs.

It was found that both energy-efficient and well performing solutions exist. However,
most solutions were bad in all respects. The results indicate that good evaluation of
heterogeneous architectures requires good mapping when the mapping problem com-
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plexity grows. Therefore, automated exploration tools are needed. SA+AT method is
presented and evaluated as a partial solution for this problem.

4.8 Best Practices for Simulated Annealing in Multiprocessor Task
Distribution Problems

[P6] is a survey of SA methods for task mapping. Research questions 1, 3 and 4
are analyzed. SA parameterization is examined from existing publications. Common
annealing schedules, acceptance functions and termination conditions are presented.
4 case studies are examined. Their relative properties, weaknesses and advantages
are compared.

The survey presents analytical insight into selection of initial and final temperatures
and the number of mappings L per temperature level. Optimization should be stopped
at final temperature Tf so that optimization effort is not wasted for greedy optimiza-
tion that is stuck in a local optimum. SA+AT method presented in [P2] is analyzed
mathematically. It is shown that SA+AT coefficient k is inverse exponentially propor-
tional to the probability p f of accepting a worsening move on the final temperature
level.

The survey also presents 9 best practices for using SA with task mapping problems.
It is argued that more attention should be put on reflecting problem space dimensions
in the SA parameters. A variety of SA parameters is recommended, including geo-
metric temperature scaling coefficients, use of systematic methods for determination
of initial and final temperatures, and a suitable number of iterations per temperature
level. It is recommended that ST move heuristics should be used when in doubt,
the same problem should be optimized multiple times to decrease the chance of bad
random chains, a normalized temperature range should be used.

The survey presents an idea that SA could be used as a main program for an applica-
tion that continuously optimizes itself provided that the application tolerates variance
in parameters and solutions. For example, run-time speed of the application could be
optimized on-the-fly to adapt to changing conditions. This discards real-time appli-
cations, but can be adapted for throughput seeking applications.

Open research questions in SA task mapping are also presented. The question of
optimal zero transition probability (∆C = 0) is answered in the Thesis.
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4.9 Parameterizing Simulated Annealing for Distributing Kahn Process
Networks on Multiprocessor SoCs

[P7] extends and improves the SA+AT method presented in [P2]. Research questions
1 to 5 are analyzed. SA+AT is extended to support KPNs, which requires changes
to parameter selection that determines an efficient annealing schedule. Optimization
time is decreased with sensitivity analysis of tasks. Tasks with lowest execution
times are ignored in the temperature range calculation to save optimization effort.
Throwing the least time consuming set of processes, e.g. 5%, allows us to skip many
temperature levels for the final temperature, which saves optimization time. Quality
of results stayed approximately the same, but over half the optimization time was
saved. The method can be applied to general process networks, it is not limited to
KPNs.

Convergence properties of the SA+AT method were analyzed by extensive simula-
tions using graphs with varying difficulty. SA+AT convergence is compared to global
optimum solutions that are found with a brute force search for 16 node graphs with 2
and 3 PEs. Global optimum convergence rate varied from 0.2 percent to 35.8 percent.
Numeric estimate is presented on the number of iterations to reach a global optimum
by repeating SA+AT algorithm many times on the same problem. The number is
based on the global optimum convergence probability. We are not aware of a global
optimum convergence experiments that are this extensive.

4.9.1 Corrected and extended results

Unfortunately, the simulation results were later found to be inaccurate due to a bug
in the simulator code. The bug was that two tasks mapped on the same PE would
together communicate over the shared interconnect instead of doing faster memory
operations on the local memory bus that is exclusively dedicated to that PE. The
simulator bug changed the optimization process so that the interconnect became an
unnecessary bottleneck for all comunication. This was a performance bug, and thus,
the applications ran much slower than they could. We fixed the communication bug,
and we present the corrected results. Also, we extend the global optimum conver-
gence results for 4 PEs.

The experiment was divided into setups A and B. We explain the effect of simulator
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bug in detail for setups A and B. The cost model for task communication is modelled
as f (n)+g(n), where f (n) is the PE cost in time to handle communication layers for
n bytes of data, and g(n) is the respective interconnect cost. For setup A, f (n) = 0.
For setup B, f (n) is in O(n) for tasks communicating on different PEs and 0 for tasks
communicating on the same PE. Thus, the cost model in setup B favors that two
communicating tasks are located on the same PE. The cost model in setup A does
not favor placing communicating tasks on the same PE, because the f (n) is always
0. The mapping process in setup A would merely place tasks so that schedule would
maximize interconnect utilization. Thus, the mapping process does not have the de-
sired effect on performance. However, setup B convergence figures in the publication
are indicative of a properly working system because of the PE cost model that favors
placing communicating tasks on the same PE.

The effectiveness of the automatic temperature method was evaluated again with a
fixed simulator. The test was the same as in the original publication, using 100 graphs
for each setup. The number of nodes varies from 16 to 256.

Table 4 shows speedups for setup A. This is the corrected version of Table III in
[P7]. Table shows the minimum, mean, median and maximum speedups for SA+AT
and SA+ST for 2 to 4 PEs. SA+ST is the same as SA+AT, but it doesn’t use the
temperature range computation method presented.

Table 5 shows the number of mappings for setup A. This is the corrected version of
Table IV in [P7]. SA+AT is less than 0.7 percent slower than SA+ST on average,
but uses less than 38 percent of mapping iterations. The result tables for setup B are
omitted; the numbers are similar. In short, SA+AT is at most 1.4 percent slower than
SA+ST on average, but uses less than 37 percent of mapping iterations.

Tables 6, 7, 8 and 9 are the corrected versions of Tables VII to X in [P7]. t is the op-
timized application execution time, t0 is the global optimum. Table 6 and 7 show the
convergence rate to within p percent of global optimum for setups A and B, respec-
tively. Results are also extended with 4 PE results. Table 8 and 7 show the expected
the number of mappings it takes to repeat SA+AT to reach withing p percent of global
optimum. Convergence results follow the same pattern with the fixed simulator as in
the original publication.

Global optimum was found in 0.3 to 38.3 percent of optimization runs with SA+AT.
It was found that near global optimum are frequently obtained. Results within 1%
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Table 4. Automatic and static temperature compared: SA+AT vs SA+ST speedup values with
setup A. Higher value is better.

2 PEs 2 PEs 3 PEs 3 PEs 4 PEs 4 PEs
SA+AT SA+ST SA+AT SA+ST SA+AT SA+ST

Min 1.781 1.817 2.296 2.347 2.612 2.585
Mean 1.969 1.973 2.777 2.788 3.310 3.333
Std 0.038 0.034 0.153 0.145 0.264 0.254
Med 1.985 1.987 2.821 2.836 3.362 3.390
Max 2.000 2.000 2.980 2.966 3.767 3.808

Table 5. Automatic and static temperature compared: SA+AT vs SA+ST number of mappings
with setup A. Lower value is better.

2 PEs 3 PEs 4 PEs
SA+AT SA+ST SA+AT SA+ST SA+AT SA+ST

Min 473 2 900 1 190 5 800 2 170 8 690
Mean 6 570 17 990 13 400 36 080 20 590 54 250
Std 6 570 15 830 13 190 31 760 19 830 47 760
Med 3 620 11 590 7 450 23 240 11 780 34 890
Max 25 150 50 610 50 610 95 440 79 080 147 270
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Table 6. Brute force vs. SA+AT with setup A for 16 node graphs. Proportion of SA+AT runs
that converged within p from global optimum. Higher convergence proportion value
is better. Lower number of mappings is better.

Proportion of runs within limit p
2 PEs 3 PEs 4 PEs

p = t
to
−1 acyclic cyclic acyclic cyclic acyclic cyclic

+0% 0.030 0.045 0.003 0.007 0.001 0.005
+1% 0.323 0.124 0.006 0.019 0.004 0.012
+2% 0.617 0.302 0.017 0.033 0.011 0.028
+3% 0.819 0.529 0.040 0.061 0.021 0.050
+4% 0.951 0.717 0.094 0.103 0.047 0.084
+5% 0.990 0.853 0.177 0.158 0.089 0.135
+6% 0.999 0.939 0.288 0.235 0.140 0.206
+7% 1.000 0.977 0.447 0.330 0.210 0.285
+8% 0.991 0.603 0.438 0.311 0.374
+9% 0.999 0.745 0.555 0.427 0.459
+10% 1.000 0.851 0.665 0.542 0.554
+11% 0.927 0.753 0.665 0.641
+12% 0.969 0.830 0.770 0.719
+13% 0.988 0.890 0.862 0.791
+14% 0.995 0.931 0.924 0.850
+15% 0.999 0.960 0.963 0.897
+16% 1.000 0.978 0.985 0.930
+17% 0.990 0.994 0.956
+18% 0.995 0.998 0.973
+19% 0.998 0.999 0.985
+20% 0.999 1.000 0.992
+21% 1.000 0.996
+22% 0.998
+23% 1.000

mean mappings 765 800 1743 1754 2960 2943
median mappings 770 761 1737 1721 2943 2956

are obtained in 0.6 to 46.0 percent of runs. Results within 2% are obtained in 1.7 to
61.7 percent of runs. Results within 5% are obtained in 15.8 to 99.0 percent of runs.
The results indicate that it is possible to save significant proportion of optimization
iterations by sacrificing a few percent of solution quality from the global optimum.
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Table 7. Brute force vs. SA+AT with setup B for 16 node graphs. Proportion of SA+AT runs
that converged within p from global optimum. Higher convergence proportion value
is better. Lower number of mappings is better.

Proportion of runs within limit p
2 PEs 3 PEs 4 PEs

p = t
to
−1 acyclic cyclic acyclic cyclic acyclic cyclic

+0% 0.383 0.326 0.045 0.126 0.042 0.066
+1% 0.460 0.388 0.088 0.160 0.067 0.076
+2% 0.580 0.516 0.134 0.250 0.097 0.091
+3% 0.647 0.560 0.188 0.323 0.140 0.116
+4% 0.734 0.632 0.236 0.372 0.202 0.176
+5% 0.783 0.661 0.337 0.422 0.267 0.210
+6% 0.830 0.697 0.463 0.470 0.338 0.342
+7% 0.883 0.712 0.564 0.497 0.427 0.395
+8% 0.914 0.735 0.659 0.533 0.535 0.488
+9% 0.931 0.748 0.747 0.595 0.620 0.536
+10% 0.951 0.809 0.807 0.632 0.709 0.585
+11% 0.960 0.853 0.858 0.665 0.781 0.627
+12% 0.966 0.875 0.897 0.728 0.833 0.676
+13% 0.972 0.901 0.925 0.761 0.874 0.721
+14% 0.991 0.906 0.947 0.790 0.907 0.750
+15% 0.994 0.911 0.969 0.820 0.932 0.777
+16% 0.996 0.918 0.983 0.848 0.954 0.811
+17% 0.996 0.923 0.990 0.868 0.968 0.837
+18% 0.996 0.935 0.996 0.895 0.977 0.865
+19% 0.997 0.941 0.998 0.915 0.984 0.877
+20% 0.997 0.953 0.999 0.924 0.989 0.892
+21% 0.998 0.959 1.000 0.943 0.995 0.900

. . . . . . . . . . . . . . . . . .
+24% 1.000 0.965 0.972 0.999 0.924
+25% 0.988 0.978 1.000 0.930
+26% 0.994 0.981 0.935

. . . . . . . . . . . .
+30% 1.000 0.993 0.966

. . . . . . . . .
+37% 1.000 0.985

. . . . . .
+48% 1.000

mean mappings 799 829 1649 1735 2661 2879
median mappings 784 788 1627 1623 2647 2704
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Table 8. Brute force vs. SA+AT with setup A for 16 node graphs: Approximate number of
mappings to reach within p percent of global optimum. As a comparison to SA+AT,
Brute force takes 32770 mappings for 2 PEs, 14.3M mappings for 3 PEs and 1.1G
mappings for 4 PEs. Lower value is better.

Number of mappings
2 PEs 3 PEs 4 PEs

acyclic cyclic acyclic cyclic acyclic cyclic
p SA+AT SA+AT SA+AT SA+AT SA+AT SA+AT

+0% 25 070 17 670 581 030 261 760 2 466 800 639 890
+1% 2 370 6 470 290 520 89 940 740 040 247 350
+2% 1 240 2 650 100 760 52 990 276 650 106 650
+3% 930 1 510 44 130 28 700 143 700 58 990
+4% 800 1 120 18 580 16 980 62 850 35 040
+5% 770 940 9 840 11 080 33 300 21 850
+6% ≤ 770 850 6 060 7 460 21 130 14 260
+7% . . . 820 3 900 5 310 14 100 10 320
+8% 810 2 890 4 000 9 510 7 870
+9% 800 2 340 3 160 6 940 6 410

+10% ≤ 800 2 050 2 640 5 470 5 320
+11% . . . 1 880 2 330 4 450 4 590
+12% 1 800 2 110 3 840 4 100
+13% 1 770 1 970 3 430 3 720
+14% 1 750 1 880 3 200 3 470
+15% 1 750 1 830 3 070 3 280
+16% 1 740 1 790 3 010 3 160
+17% . . . 1 770 2 980 3 080
+18% 1 760 2 970 3 030
+19% 1 760 2 960 2 990
+20% 1 760 . . . 2 970
+21% 1 750 2 960

. . . . . . . . .
+25% 2 950
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Table 9. Brute force vs. SA+AT with setup B for 16 node graphs: Approximate number of
mappings to reach within p percent of global optimum. As a comparison to SA+AT,
Brute force takes 32770 mappings for 2 PEs, 14.3M mappings for 3 PEs and 1.1G
mappings for 4 PEs. Lower value is better.

Number of mappings
2 PEs 3 PEs 4 PEs

acyclic cyclic acyclic cyclic acyclic cyclic
p SA+AT SA+AT SA+AT SA+AT SA+AT SA+AT

+0% 2 090 2 540 33 930 13 790 62 910 43 620
+1% 1 740 2 140 18 630 10 840 39 600 37 730
+2% 1 380 1 610 12 290 6 950 27 580 31 570
+3% 1 240 1 480 8 750 5 370 19 060 24 860
+4% 1 090 1 310 6 990 4 660 13 190 16 350
+5% 1 020 1 250 4 900 4 110 9 990 13 740
+6% 960 1 190 3 570 3 690 7 890 8 820
+7% 910 1 160 2 920 3 490 6 240 7 290
+8% 880 1 130 2 500 3 250 4 970 5 900
+9% 860 1 110 2 210 2 920 4 290 5 370

+10% 840 1 030 2 040 2 740 3 750 4 930
+11% 830 970 1 920 2 610 3 410 4 590
+12% 830 950 1 840 2 380 3 190 4 260
+13% 820 920 1 780 2 280 3 040 3 990
+14% 810 920 1 740 2 200 2 940 3 840
+15% 800 910 1 700 2 120 2 850 3 710
+16% ≤ 800 900 1 680 2 050 2 790 3 550
+17% . . . 900 1 670 2 000 2 750 3 440
+18% 890 1 660 1 940 2 720 3 330
+19% 880 1 650 1 900 2 700 3 280
+20% 870 ≤ 1 650 1 880 2 690 3 230
+21% 870 . . . 1 840 2 680 3 200
+22% 860 1 830 2 670 3 160
+23% 860 1 800 2 670 3 130
+24% 860 1 780 2 660 3 120
+25% 840 1 780 . . . . . .
+26% 830 1 770 3 080
+27% . . . 1 760 3 040

. . . . . . . . .
+37% 1 740 2 920

. . . . . .
+45% 2 880



5. DCS TASK MAPPER

5.1 DCS task mapper

DCS task mapper is a tool that does task mapping (placement) and scheduling for
MPSoCs. Applications are modeled as DAGs or KPNs. Tasks are processes that
execute on a PE, such as a processor or a HW accelerator. The tool tries to place each
task to a PE so that a given objective function is minimized. The program supports
SA, GA, RM, GM, OSM, brute force and FP mapping algorithms.

The program is available at DACI research group web site [22] under an Open Source
license: LGPL 2.1 [55]. The program was written in C with performance in mind to
carry out experiments for Publications [P2-P7]. [P1] used a Python prototype of the
DCS task mapper. The tool, including the Python prototype, was written from scratch
by the Author of the Thesis.

The program simulates a virtual system based on PEs and communication channels.
Figure 11 shows the data flow and state transitions of the tool on a high level. Events,
operations of tasks and communication messages are scheduled onto PEs and com-
munication channels. Tasks compete for computation and communication time, but
only one task at a time may execute on a PE or communicate on a communication
channel. The program reads a mapping-scheduling problem as input. The input
consists of a virtual system architecture, task graph, optimization algorithm and its
parameters. The program maps task graph onto the system and schedules it to obtain
objective space values, e.g. execution time, power and area. Execution time, power
and area are annotated into architecture and task graph description. Time-level behav-
ior is simulated according to annotated values. The system does not produce actual
data.

Time behavior and resource contention is simulated for PEs and communication
channels onto which task computation and communication is mapped. The simulator
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Fig. 11. DCS task mapper data flow and state transitions. Solid line indicates data flow.
Dashed line indicates causality between events in the state machine.
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event loop handles four events: transfer finished, computation finished, communica-
tion channel ready to transfer and PE ready to compute.

Tasks consist of 3 kinds of operations: compute X cycles, read Y or write Z bytes of
data onto a communication channel. This simple operation set makes fast scheduling
and simulation possible. PE executes operations from a task until a blocking read
operation takes place, then a task switch takes place on the PE. When a task receives
data that it needs to continue execution, it is unblocked. Tasks are waken up based
on task priorities. Task priorities are supported for scheduling optimization. DAGs
use critical path scheduling to set task priorities. KPNs use FIFO scheduling, but
priority based scheduling is supported too. An efficient heap data structure is used to
determine the task that has the most highest priority.

Communication scheduling can be optimized with different scheduling policies. FIFO,
LIFO, priority and random order policies are supported. Critical path scheduling is
used with DAGs. FIFO scheduling is used with KPNs. Adding new scheduling poli-
cies is modular.

The program contains approximately 8200 lines of C [62] written for GNU/Linux
and UNIX-like systems. The program only depends on C library and a few system
calls. The program was originally prototyped with a Python [63] implementation that
was two orders of magnitude slower than the C implementation. Python was found
to be an excellent prototyping language for algorithms and simulation, but it was too
slow. Months of simulation time was reduced to days with a C implementation. The
C implementation took several computation months to complete the experiments of
the publications.

The execution time of the task mapper is effectively dependent on the simulation part,
and thus, the number of mappings tried by the optimization heuristics. Optimization
heuristics used consume less than one percent of the execution time. Table 10 shows
the number of mappings explored, the mapping speed and the time computed with
DCS task mapper for publications [P2] [P3] [P4] [P5] [P7].

5.2 Job clustering with jobqueue

Publications [P1]-[P4] use shell scripts to distribute task mapping jobs into a cluster
of 10 Gentoo Linux machines with 2.8GHz Pentium 4 processor. A shell script would
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Table 10. Number of mappings explored, the mapping speed and the time computed with DCS
task mapper for publications

P2 P3 P4 P5 P7

Mappings explored (1E9) 2.03 2.00 0.85 0.52
Mappings per second 620 2100-12000 297 358 90

Computation time (days) 38 78 27 67
PEs 2-8 2-4 2,4,8 2-5 2-4

Tasks 50, 300 50, 100 300 300 16-256

upload executable image and data files with OpenSSH [60] to machines in the cluster,
and start the processing jobs on background with GNU screen [72]. This approach
turned out to be tedious, since machines were often rebooted by users, and had to
be restarted manually. Result data files were collected with SSH from each machine.
Results were analyzed with custom Python scripts and standard shell tools.

The failing machine problem was mitigated by creating a new clustering tool called
jobqueue [35]. jobqueue is spelled with non-capital initial letter, that is, the com-
mand line syntax form. The tool automatically re-issues jobs from failed machines to
others. Publications [P5], [P7] and this Thesis use jobqueue to distribute tasks onto a
cluster of machines, or a set of cores on a single machine.

jobqueue is command line tool that tracks a number of parallel jobs. jobqueue reads
one line per computation job from a file (or standard input), and issues these jobs to
a number of execution places. Execution place is usually a machine in a cluster, or a
single core on the machine that executes jobqueue. Jobqueue supports job migration
for failed machines. If a machine is rebooted, the job comes back to work queue and
is later submitted to another machine. jobqueue terminates when all jobs have been
processed, or all execution places have failed.

Each issued job is a line in a job file. The line is interpreted as a shell command with
arguments. jobqueue appends the execution place id to be the last argument of the
executed shell command. It is up to the shell command to upload data files and issue
RPC. Typically ssh and rsync are used inside the script. Remote command issuing is
usually as simple as the following shell script:
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#!/bin/sh

input="$1"

results="$2"

host="$3"

cat "$input" |ssh "$host" "nice -n 19 bin/taskmapper" \

> "$results"

bin/taskmapper is the DCS task mapper executable on the remote machine. The
input is read from a data file that is piped through OpenSSH to the remote taskmapper.
The remote taskmapper writes results to its standard output which is piped through
OpenSSH to a local result file. Minimal engineering and resources are needed to
setup this kind of system. No commercial software is needed.

Jobqueue has 2280 lines of C code, out of which 970 lines are dead code under
prototype development. It was written by the Author of this Thesis. The source code
is available under Public Domain at [35].
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6. SIMULATED ANNEALING CONVERGENCE

6.1 On global optimum results

This section analyzes research questions 2, 3 and 5. How many mapping iterations
are needed to reach a given solution quality? SA convergence rate and the number of
mapping iterations is compared with respect to global optimum solutions. How does
each parameter of the algorithm affect the convergence rate and quality of solutions?
The effect of L value and acceptance function is analyzed with respect to the number
of mapping iterations and solution quality. How often does the algorithm converge
to a given solution quality? We present convergence results with reference to global
optimum solutions.

A global optimum is hard to find for large task graphs since the mapping problem
is in NP-complexity class. Effectiveness of heuristics may decrease rapidly as the
number of nodes grows. The total number of mappings X for N nodes and M PEs is
X = NM. The number of mappings grows exponentially with respect to nodes, and
polynomially with respect to PEs. Adding PEs is preferable to adding nodes from
this perspective.

[P7] analyzed global optimum convergence for 2 and 3 PE architectures and 16 node
KPNs by using a brute force algorithm. The experiment is extended to 32 node
graphs on 2 PEs. More than 2 PEs would be too costly to compute in brute force
for 32 or more nodes. PE mapping was fixed for one node, which yields X = 231 ∼
2.1× 109 mappings for each graph. Fixing one node is a valid choice because PEs
are homogeneous. The technical details of the experiment are explained in [P7].

Ten task graphs were generated with setup B in [P7]. Graphs were generated with
kpn-generator [46] with following parameters: target distribution parameter 10%,
cyclic graphs (default) and b-model parameter for both communication size and com-
putation time as 0.7 (default). Target distribution defines the relative number of tasks
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that can act as a target for each task. For example, 10% target distribution for a 32
node graph means each task can communicate with at most 3 other tasks.

Global optimum results were compared to SA+AT by running SA+AT 1000 times
independently for each graph. The proportion of SA+AT that come within p percent
of global optimum was calculated. Table 11 shows the proportion of SA+AT runs that
got execution time t ≤ (1+ p)to, where p is the execution time overhead compared
to global optimum execution time to. p = 0% means the global optimum (execution
time). p = 10% means execution time no more than 10% over the global optimum.
The last two rows show mean and median values for the number of mappings tried in
a single SA+AT run. Figure 12 shows the same values. SA uses 0.4 to 9 millionths
of the brute force iterations, but does not always converge to a global optimum.

Table 12 shows the expected number of mappings needed to obtain a result within
p percent of global optimum by repeatedly running SA+AT. The same values are
plotted in Figure 13. These values are based on the mean iterations and probabilities
in Table 11. Note, convergence is probabilistic, which means the actual global opti-
mum might never be reached. SA uses on average 43 to 64 millionths of the brute
force iterations to reach global optimum. Optimization time is reduced by 5 orders
of magnitude.

Brute force uses 2.0×104 times the iterations compared to SA with L= 32, the choice
of SA+AT, and 2.3×104 times iterations compared to SA with L = 64. Both values
show 4 orders of improvement over brute force. Results within 3% of global opti-
mum are reached with 5 orders of magnitude improvement in iterations by using the
SA+AT. Results within 16% are reached with 6 orders of magnitude improvement.

Figure 14 shows the task graph execution time for one graph plotted against the num-
ber of mappings. All possible mapping combinations for 32 nodes and 2 PEs were
computed with brute force search. One node mapping was fixed. 31 node mappings
were varied resulting into 231 = 2147483648 mappings. The initial execution time is
875 µs, mean 1033 µs and standard deviation 113 µs. Table 13 shows the proportion
of SA runs that converged within p percent of global optimum and the associated
number of mappings within that range computed from the brute force search. There
is only one mapping that is the global optimum: 535 µs. SA reaches the global opti-
mum in 2.1% of the runs. Repeating SA yields the global optimum in approximately
1E5 iterations. RM would find global optimum in 1E9 iterations in approximately
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Table 11. SA+AT convergence with respect to global optimum with L = 16,32,64,128 and
256 for 32 nodes. Automatic parameter selection method in SA+AT chooses L =

32. Values in table show proportion of SA+AT runs that converged within p from
global optimum. Higher value is better.

Proportion of runs within limit p
L value

p = t
to
−1 16 32 64 128 256

+0% 0.006 0.016 0.038 0.080 0.152
+1% 0.010 0.026 0.061 0.129 0.232
+2% 0.023 0.051 0.117 0.224 0.365
+3% 0.039 0.084 0.173 0.311 0.477
+4% 0.057 0.119 0.230 0.391 0.558
+5% 0.076 0.154 0.287 0.468 0.649
+6% 0.101 0.201 0.355 0.553 0.732
+7% 0.137 0.264 0.439 0.653 0.834
+8% 0.178 0.337 0.536 0.757 0.919
+9% 0.220 0.400 0.606 0.819 0.949
+10% 0.267 0.461 0.675 0.870 0.969
+11% 0.319 0.531 0.747 0.917 0.985
+12% 0.378 0.605 0.812 0.952 0.994
+13% 0.449 0.664 0.864 0.972 0.998
+14% 0.509 0.726 0.906 0.983 0.999
+15% 0.568 0.780 0.935 0.992 1.000
+16% 0.627 0.831 0.958 0.996
+17% 0.681 0.868 0.974 0.998
+18% 0.731 0.903 0.984 0.999
+19% 0.778 0.930 0.990 0.999
+20% 0.820 0.953 0.994 1.000
+21% 0.853 0.968 0.997
+22% 0.884 0.979 0.998
+23% 0.908 0.985 0.999
+24% 0.931 0.991 1.000
+25% 0.947 0.995
+26% 0.961 0.996
+27% 0.971 0.998
+28% 0.980 0.999
+29% 0.987 1.000
+30% 0.992

. . . . . .
+37% 1.000

mean mappings 840 1 704 3 516 7 588 19 353
median mappings 836 1 683 3 437 7 428 18 217
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Table 12. Approximate expected number of mappings for SA+AT to obtain global optimum
within p percent for L = 16,32,64,128 and 256 for 32 nodes. SA+AT chooses
L = 32. Best values are in boldface on each row. Lower value is better.

Estimated number of mappings
L value

p 16 32 64 128 256

+0% 137741 108507 92766 94966 127744
+1% 84022 65021 57921 58865 83347
+2% 36531 33208 29947 33919 53023
+3% 21767 20402 20334 24429 40556
+4% 14793 14340 15300 19406 34683
+5% 11099 11084 12242 16206 29820
+6% 8311 8471 9907 13721 26439
+7% 6155 6458 8001 11627 23208
+8% 4723 5060 6561 10027 21059
+9% 3812 4255 5804 9264 20402

+10% 3150 3695 5212 8724 19970
+11% 2635 3208 4708 8276 19654
+12% 2221 2817 4328 7972 19472
+13% 1873 2564 4069 7810 19394
+14% 1651 2348 3881 7717 19367
+15% 1480 2183 3761 7647 19357
+16% 1340 2051 3670 7618
+17% 1234 1963 3609 7604
+18% 1149 1886 3572 7595
+19% 1080 1832 3550 7593
+20% 1025 1787 3537 7589
+21% 985 1760 3526
+22% 950 1741 3524
+23% 926 1730 3520
+24% 903 1719 3518
+25% 888 1713
+26% 874 1710
+27% 865 1706
+28% 857 1705
+29% 851 1704
+30% 847
+31% 845

. . . . . .
+37% 841
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Fig. 12. SA+AT convergence with respect to global optimum with L = 16,32,64,128 and 256
for 32 nodes. SA+AT chooses L = 32. Lines show proportion of SA+AT runs that
converged within p from global optimum for a given value of L. Lower p value on
X-axis is better. Higher probability on Y-axis is better.

half the runs. RM only converges within 13% of the global optimum in a million iter-
ations. Also, there is only one mapping that is the worst solution: 1708 µs. Reversing
the cost difference comparison in SA yields the worst solution in 0.9% of the runs.
The SA algorithm can therefore also find the global maximum.

Table 14 shows global optimum convergence rate variance between graphs for L val-
ues. Doubling L approximately doubles the mean convergence rate. Minimum and
maximum convergence rates vary by a factor of 50, approximately.

With L = 256 the hardest graph converged with probability 0.4%, but the same graph
converged within 1% with 4.4% probability, within 2% with 8.8% probability, and
within 3% with 22.3% probability. Sacrificing just 3% from optimum more than
doubles the convergence rate on average, as shown by Table 11. The easiest graph
converged to optimum with 27.8% probability, but within 3% with just 32.6% prob-
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Fig. 13. Expected number of iterations to reach global optimum within p = 0%,2%,5% and
10% for L = 16,32,64,128 and 256 with 32 nodes. SA+AT chooses L = 32. Lower
p value on X-axis is better. Lower number of iterations on Y-axis is better.

Table 13. Proportion of SA runs that converged within p percent of global optimum and the
associated number of mappings within that range computed from the brute force
search. Higher mapping number and SA run proportion is better.

Number of SA run
p = t

to
−1 mappings proportion

+0% 1 2.1%
+1% 1 2.1%
+2% 4 5.8%
+3% 8 11.2%
+4% 16 17.1%
+5% 30 19.8%
+6% 45 21.2%
+7% 74 28.2%
+8% 127 34.7%
+9% 226 40.5%

+10% 355 49.0%
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Fig. 14. Task graph execution time for one graph plotted against the number of mappings. All
possible mapping combinations for 32 nodes and 2 PEs were computed with brute
force search. One node mapping was fixed. 31 node mappings were varied resulting
into 231 = 2147483648 mappings. The initial execution time is 875 µs, mean 1033
µs and standard deviation 113 µs. There is only one mapping that reaches the global
optimum 535 µs.

ability. This indicates there are not many solutions near the global optimum, but
hitting the global optimum is rather probable (27.8%). This is opposite to the hard-
est graph where hitting the global optimum is hard (probability 0.4%), but there are
many solutions within 3% that hit at 22.3% probability.

Experiment data, scripts and instructions how to repeat and verify the experiment are
available at DCS task mapper web page [22] under the section “Experimental data”.
A reference C implementation of the SA+AT algorithm is also available at [64]. The
experiment can be repeated with a GNU/Linux system by using DCS task mapper
and jobqueue [35]. Experiment scripts probe for available processors and use multi-
processing to produce the results.
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Table 14. Global optimum convergence rate varies between graphs and L values. The sample
is 10 graphs. Columns show the minimum, mean, median and maximum probability
of convergence to global optimum, respectively. Value 0% in Min column means
there was a graph for which global optimum was not found in 1000 SA+AT runs.
For L≥ 32 global optimum was found for each graph. Note, the Mean column has
same values as the p = 0% row in Table 11.

L Min (%) Mean (%) Median (%) Max (%)

16 0.0 0.6 0.4 1.6
32 0.1 1.6 0.9 4.7
64 0.3 3.8 2.9 8.6
128 0.3 8.0 6.9 15.7
256 0.4 15.2 15.6 27.8

6.2 On SA acceptance probability

6.2.1 On acceptor functions

We analyze research question 3 in this section: How normalized exponential and in-
verse exponential acceptor functions compare in solution quality and convergence?
We ran an experiment to compare the normalized inverse exponential (2) and normal-
ized exponential (5) acceptor functions. Parameter selection method from [P7] was
applied to (5). The experiment was re-run for both acceptor functions, 100 graphs,
2-4 PEs, 10 times each case, totaling 6000 optimization runs.

Table 15 shows gain results for both acceptor functions. Table 16 shows the number
of iterations. Exponential acceptor is not more than half a percent better in terms of
gain.

However, exponential acceptor loses up to 7% in the number of iterations. Both SA
algorithms have an equal number of iterations per temperature from T0 to Tf . Opti-
mization terminates when T ≤ Tf and L consecutive rejections happen. Acceptance
function affects the number of consecutive rejections which makes the difference in
the number of iterations. Inverse exponential acceptor has higher rejection probabil-
ity, which makes it stop earlier than an exponential acceptor.

Very few papers try different acceptor functions. [P1-7] use inverse exponential func-
tion. In retrospect it seems that exponential function would not have affected results



6.2. On SA acceptance probability 61

Table 15. Comparing average and median gain values for the inverse exponential and expo-
nential acceptors. A is the mean gain for experiments run with inverse exponential
acceptor. B is the same for exponential acceptor. C and D are median gain values
for inverse exponential acceptor and exponential acceptor, respectively. Higher
value is better in columns A, B, C and D.

Mean gain Median gain
PEs A B A

B −1 C D C
D −1

2 1.329 1.334 −0.3% 1.314 1.316 −0.2%
3 1.566 1.576 −0.6% 1.531 1.538 −0.5%
4 1.794 1.798 −0.2% 1.757 1.761 −0.2%

Table 16. Comparing average and median iterations for the inverse exponential and expo-
nential acceptors. E is the mean iterations for experiments run with inverse expo-
nential acceptor. F is the same for exponential acceptor. G and H are the median
iterations for inverse exponential and exponential acceptors, respectively. Lower
value is better in columns E, F, G and H.

Mean iterations Median iterations
PEs E F E

F −1 G H G
H −1

2 6758 6882 −1.8% 4228 4272 −1.0%
3 13577 14120 −3.8% 8456 8536 −1.0%
4 20734 22398 −7.4% 12850 13806 −6.9%

significantly. It is possible that a better acceptor function exists, but these two are
used most widely.

Furthermore, we compared brute force results with 32 nodes and 2 PEs between nor-
malized exponential and normalized inverse exponential acceptors. Table 17 shows
the difference between global optimum converge rates for the two acceptors for
SA+AT. Results indicate normalized exponential acceptor converges slightly more
frequently than normalized inverse exponential acceptor. The SA+AT choice L = 32
displays difference of at most 2.4% in absolute convergence rate.

We recommend using normalized exponential acceptor for task mapping.
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Table 17. The table shows difference between SA+AT convergence rate of normalized ex-
ponential acceptor and normalized inverse exponential acceptor results. Inverse
exponential acceptor results are shown in Table 11. The experiment is identical to
that in Table 11. Automatic parameter selection method in SA+AT chooses L = 32.
p percentage shows the convergence within global optimum. A positive value indi-
cates normalized exponential acceptor is better.

Exec. time overhead Convergence rate difference
L value

p = t
to
−1 16 32 64 128 256

+0% 0.001 0.003 0.006 0.007 0.009
+1% 0.003 0.006 0.008 0.003 0.011
+2% 0.001 0.009 0.014 0.009 0.006
+3% 0.003 0.010 0.016 0.015 0.015
+4% 0.004 0.011 0.016 0.012 0.015
+5% 0.006 0.014 0.021 0.011 0.010
+6% 0.011 0.014 0.025 0.012 0.013
+7% 0.011 0.016 0.028 0.010 0.003
+8% 0.011 0.015 0.030 0.006 −0.004
+9% 0.014 0.016 0.031 0.004 −0.004

+10% 0.016 0.019 0.035 0.002 −0.002
+11% 0.015 0.019 0.023 0.000 −0.002
+12% 0.013 0.014 0.015 −0.004 −0.002
+13% 0.003 0.024 0.012 −0.002 −0.001
+14% 0.002 0.020 0.007 0.001 0.000
+15% 0.001 0.019 0.006 0.000
+16% −0.001 0.015 0.004 0.000
+17% 0.002 0.013 0.002 0.000
+18% 0.001 0.009 0.002 0.000
+19% −0.002 0.006 0.002 0.001
+20% −0.004 0.001 0.002 0.000
+21% −0.004 −0.001 0.001
+22% −0.005 0.000 0.000
+23% −0.002 0.000 0.000
+24% −0.002 0.000 −0.001
+25% −0.002 0.000 0.000
+26% −0.002 0.001
+27% −0.001 0.000
+28% 0.000
+29% −0.001

. . . . . .
+35% 0.000
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6.2.2 On zero transition probability

SA acceptance function defines the probability to accept a move for a given objective
change and the temperature. Zero transition probability is the probability of accept-
ing a move that does not change the cost. We studied the effect of zero transition
probability to the solution quality. This belongs to the category of the third research
question.

The normalized inverse exponential acceptance function (2) gives 0.5 probability for
zero transition, that is, when ∆C = 0. The acceptance function was modified (6) to
test the effect of zero transition probability:

Accept(∆C,T ) =
2a

1+ exp( ∆C
0.5C0T )

, (6)

a is the probability for ∆C = 0. SA+AT was re-run for several graphs with the setup
specific in detail in [P7] with distinct probabilities a∈ [0.1,0.2, . . . ,1.0]. Two 16 node
cyclic graphs, one 128 node cyclic graph, two 16 node acyclic graphs, and one 128
acyclic graph, all with target distribution 10%, were tested with a 3 PE system. No
causality was found between solution quality and the zero transition probability.

6.3 On Comparing SA+AT to GA

We present a comparison of SA+AT and a GA heuristics with respect to global op-
timum results. GA is used to optimize the same 10 graphs that were optimized with
SA+AT in Section 6.1. Graphs have 32 nodes and the architecture has 2 PEs. The
converge rate and the number of iterations to reach a global optimum solution is pre-
sented. This sets a direct comparison with SA+AT results. First, we present the GA
heuristics in Section 6.3.1. Second, we analyze the problem of finding free param-
eters of the heuristics in Section 6.3.2. Finally, we describe the experiment and its
results in Section 6.3.3.

6.3.1 GA heuristics

GA heuristics shown in Figure 15 is used to optimize a population of mapping solu-
tions. GA heuristics is implemented in DCS task mapper. Line 1 creates a population
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GENETIC ALGORITHM(S0)

1 P← CREATE POPULATION SET(S0)

2 i← 0
3 Sbest ← COMPUTE FITNESS FOR EACH MEMBER(P∪S0)

4 while i < imax

5 do Pnew← SELECT ELITE FROM POPULATION(P)
6 while |Pnew|< |P|
7 do Sa← SELECT RANDOM MEMBER(P)
8 Sb← SELECT RANDOM MEMBER(P)
9 Pnew← Pnew∪REPRODUCE(Sa,Sb)

10 P← Pnew

11 Sbest ← COMPUTE FITNESS FOR EACH MEMBER(P∪Sbest)

12 return Sbest

Fig. 15. Pseudocode of a Genetic Algorithm (GA) heuristics

P of members based on an initial task mapping S0. Each member is a mapping of a
task graph. The first member of the population is S0. Following members are gen-
erated by applying point mutation with 100% probability for each member. Point
mutation applies on the first task for the first mutated member, on the second task
for the second mutated member, and so on. This approach initializes the population
so that most members are initially mutated with respect to one task mapping. Line 2
initializes the number of evaluated mappings i to 0. Lines 3 and 11 compute a fitness
value for each member of the population. The most fittest member is returned as
Sbest . Variable i is incremented by the number of members whose fitness values are
computed, as a side effect. Fitness value is used to determine a reproduction proba-
bility for a member. Fitness value F is computed as F = 1

C where C is the objective
value (cost) of a member. Reproduction probability for the member is determined by
probability

pa =
Fa

∑
b∈P

Fb
(7)

where pa is the reproduction probability of population member a, Fa is the fitness
value of member a and b is a member of population P. pa is the share of the member
a’s fitness in the population. Line 4 loops the optimization algorithm until imax map-
pings have been evaluated in total. The execution of the algorithm is very accurately
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determined by the scheduling and simulation of a mapping. The experiment varies
imax to compare SA and GA efficiency with respect to number of mappings. Line 5
initializes a new population Pnew that consists of the elite of population P. The elite is
a given number of most fittest members in the population, as determined by the fitness
value F . This is called elitism. Line 6 starts a loop that generates new members into
the population by reproducing randomly selected members from population P. The
loop continues until population Pnew has as many members as population P. Line 7
and 8 choose a member from population by random. These members will reproduce
a child. Member a of the population is selected with probability pa that is determined
by member’s fitness value. The random selection also disqualifies a given number of
least fittest members of the population from random selection. This is called discrim-
ination. Line 9 combines the two selected members with a Reproduce function into
a new member that is inserted into the new population. Line 10 copies population
Pnew to P. Line 12 returns the most fittest member, that is, the lowest cost member of
the population after imax mapping evaluations.

Reproduce function has two steps: crossover and mutation. Both steps take place
with a given probability. These are called crossover probability and chromosome mu-
tation probability. DCS task mapper has an optimization for equivalent functionality
of line 11 which avoids recomputing new member’s fitness if neither crossover nor
mutation has affected the member.

Crossover If crossover takes place, a new member is constructed with uniform ran-
domization. Uniform randomization selects a task mapping for each task by ran-
domly assigning the mapping from either parent.

Chromosome Mutation If mutation takes place, mapping of each task is determined
with point mutation. Point mutation takes an individual task, and alters its mapping
with a probability determined by a given gene mutation probability. The mapping is
altered by selecting a random PE. The alteration function is the Move function from
SA+AT.
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6.3.2 Free parameters of GA

Crossover, gene and chromosome mutation probabilities, the amount of elitism and
discrimination, the population size and the total number of evaluated mappings imax

are the free parameters for the experiment. Crossover and chromosome mutation
probability was randomly selected from range [0.5,1.0). Gene mutation probability
was selected from range [0.0,0.1).

Population size was randomized from 4 to 256 members. Elitism was at most 20% of
population size. Discrimination was at most 1 member. Discrimination was limited
to 1 as it was found in earlier experiments that it is not helpful with values over 1
with our problem cases.

The experiment was repeated for three values of imax = 2048, 4096 and 8192. For
each imax value, other free parameters were determined with a parameter exploration
process that randomized values from the given ranges. The parameter exploration
process evaluated 7641 random parameters for imax = 2048 and 4096, and 9372 ran-
dom parameters for imax = 8192. Each parameter presents a selection of all free
variables.

A cost value was computed for each parameter by evaluating each of the 10 graphs
10 times. That is, GA was run 100 times for each parameter. For each GA run, the
optimized objective value was normalized with a global optimum value obtained in
the experiment in Section 6.1.

For each graph, a graph mean value was computed from the 10 normalized objective
values (each≥ 1). The graph mean value is at least 1. The cost value of the parameter
is the mean of graph means, that is, at least 1. A lower cost means a parameter is bet-
ter. The parameter exploration process totalled (2×7641+9372)×100 = 2465400
GA runs. This yielded approximately 1.2× 1010 evaluated mappings with a cluster
of machines and simulations parallelized with jobqueue.

Figure 16 shows the distribution of cost values for GA parameters in the parameter
exploration process. 1.00 would mean the algorithm converges to global optimum
on average. 1.10 means that algorithm converges within 10% of the global optimum.
The minimum and maximum costs for different imax series in the Figure are 1.124
and 1.532 for imax = 2048, 1.093 and 1.515 for imax = 4096, and 1.077 and 1.509
for imax = 8192. The maximum cost is 36% to 40% higher than the minimum cost
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obtained. This distribution means the parameter exploration process is necessary.
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Fig. 16. Distribution of parameter costs in the exploration process. Y-axis is the mean of
normalized costs, 1.00 being the global optimum. Value 1.1 would indicate that a
parameter was found that converges on average within 10% of the global optimum.
Lower value is better.

6.3.3 GA experiment

3 parameters for each value of imax was selected from the parameter exploration pro-
cess for detailed evaluation, that is the experiment. 3 paramaters for 3 values of imax

totals 9 parameters. GA is run 1000 times for each graph and each parameter. With
ten graphs, this means 1000×10×9 = 90000 GA runs. In total, this yields evaluat-
ing approximately 430 million mappings with GA. We present the results of the best
of three parameters for each imax. The best found parameters are shown in Table 18.
It is not surprising that low population size was preferred because finding a good
mapping by mutation requires a large number of sequential generations even with a
good crossover algorithm.

Table 19 shows the global optimum convergence rate with p percent for SA+AT and
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Table 18. The best found GA parameters for different max iteration counts imax. Discrimina-
tion and elitism presented as the number of members in a population.

imax

Parameter Range 2048 4096 8192
Chromosome mutation probability [0.5,1.0) 0.995 0.906 0.691

Crossover probability [0.5,1.0) 0.500 0.678 0.861
Gene mutation probability [0,0.1) 0.068 0.043 0.088

Population size (|P|) [4,256] 4 5 7
Discrimination [0,1] 1 1 1

Elitism [0,0.2|P|] 1 1 1

GA. SA+AT results are copied directly from the earlier experiment. Columns in the
table are ordered with respect to mean number of evaluated mappings per run. For
example, the second column is SA with 1704 iterations (L = 32), the least iterations
per run. The third column is GA with imax = 2048.

Table 20 shows the expected number of iteration to reach within p percent of global
optimum by repeating the GA or SA algorithm over and over again. SA+AT results
are copied directly from the earlier experiment. Figure 17 shows the same informa-
tion for p = 0%, 2%, 5% and 10%.

SA+AT by default (L = 32) does mean of 1704 mappings per run, and converges
to global optimum with probability 1,6%. This yields the mean of 106500 mapping
iterations to reach global optimum by repeating the SA algorithm over and over again.
GA does mean of 2048 mappings per run and converges to global optimum with
probability 0,9%. This yields the mean of 227600 iterations to reach global optimum
by repeating the GA algorithm. In this case, SA needs 53% less iterations than GA
to reach global optimum.

The most efficient SA action takes place with L = 64, where SA needs approximately
92500 iterations to reach global optimum. The most efficient GA case is imax = 4096,
where 215600 iterations is needed. SA needs 57% less iterations.

GA is less efficient in this comparison, but there are biasing issues that are worth
considering in the experiment.

The first issues is that the free parameters of GA were separately chosen for each imax

value. This should affect GA results positively, because the best GA parameters were
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Table 19. SA+AT and GA convergence compared with respect to global optimum. Automatic
parameter selection method in SA+AT chooses L = 32. Mean mappings per run
for GA is the imax value. Values in table show proportion of optimization runs that
converged within p from global optimum. Higher value is better.

Proportion of runs within limit p
Algorithm SA+AT GA SA+AT GA SA+AT GA

Mean mappings / run 1 704 2 048 3 516 4096 7 588 8192
p = t

to
−1 L = 32 L = 64 L = 128

+0% 0.016 0.009 0.038 0.019 0.080 0.036
+1% 0.026 0.013 0.061 0.028 0.129 0.052
+2% 0.051 0.029 0.117 0.058 0.224 0.101
+3% 0.084 0.051 0.173 0.100 0.311 0.155
+4% 0.119 0.071 0.230 0.124 0.391 0.187
+5% 0.154 0.091 0.287 0.149 0.468 0.226
+6% 0.201 0.128 0.355 0.208 0.553 0.298
+7% 0.264 0.173 0.439 0.274 0.653 0.384
+8% 0.337 0.244 0.536 0.376 0.757 0.495
+9% 0.400 0.296 0.606 0.432 0.819 0.560

+10% 0.461 0.354 0.675 0.486 0.870 0.620
+11% 0.531 0.428 0.747 0.569 0.917 0.700
+12% 0.605 0.500 0.812 0.630 0.952 0.761
+13% 0.664 0.562 0.864 0.689 0.972 0.807
+14% 0.726 0.616 0.906 0.728 0.983 0.841
+15% 0.780 0.666 0.935 0.760 0.992 0.867
+16% 0.831 0.712 0.958 0.796 0.996 0.897
+17% 0.868 0.751 0.974 0.820 0.998 0.916
+18% 0.903 0.787 0.984 0.848 0.999 0.934
+19% 0.930 0.822 0.990 0.885 0.999 0.952
+20% 0.953 0.854 0.994 0.919 1.000 0.967
+21% 0.968 0.885 0.997 0.943 0.978
+22% 0.979 0.913 0.998 0.961 0.987
+23% 0.985 0.936 0.999 0.973 0.991
+24% 0.991 0.954 1.000 0.984 0.996
+25% 0.995 0.968 0.991 0.998
+26% 0.996 0.978 0.994 0.999
+27% 0.998 0.985 0.997 0.999
+28% 0.999 0.990 0.998 0.999
+29% 1.000 0.993 0.999 1.000
+30% 0.995 0.999
+31% 0.997 1.000

. . . . . .
+34% 1.000
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Table 20. Approximate expected number of mappings for SA+AT and GA to obtain objective
value within p percent of the global optimum. SA+AT chooses L = 32 by default.
Best values are in boldface on each row. Lower value is better.

Estimated number of mappings
Algorithm SA+AT GA SA+AT GA SA+AT GA

Mean mappings / run 1 704 2 048 3 516 4096 7 588 8192
p L = 32 L = 64 L = 128

0% 106500 227600 92500 215600 94900 227600
1% 65500 157500 57600 146300 58800 157500
2% 33400 70600 30100 70600 33900 81100
3% 20300 40200 20300 41000 24400 52900
4% 14300 28800 15300 33000 19400 43800
5% 11100 22500 12300 27500 16200 36200
6% 8500 16000 9900 19700 13700 27500
7% 6500 11800 8000 14900 11600 21300
8% 5100 8400 6600 10900 10000 16500
9% 4300 6900 5800 9500 9300 14600

10% 3700 5800 5200 8400 8700 13200
11% 3200 4800 4700 7200 8300 11700
12% 2800 4100 4300 6500 8000 10800
13% 2600 3600 4100 5900 7800 10200
14% 2300 3300 3900 5600 7700 9700
15% 2200 3100 3800 5400 7600 9400
16% 2100 2900 3700 5100 . . . 9100
17% 2000 2700 3600 5000 8900
18% 1900 2600 3600 4800 8800
19% 1800 2500 3600 4600 8600
20% 1800 2400 3500 4500 8500
21% 1800 2300 . . . 4300 8400
22% 1700 2200 4300 8300
23% . . . 2200 4200 8300
24% 2100 4200 8200
25% 2100 4100 . . .
26% 2100 . . .
27% 2100
28% 2100
29% 2100
30% 2100
31% 2100
32% 2000
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Fig. 17. Expected number of iterations to reach global optimum within p = 0%,2%,5% and
10% for GA and SA. Lower p value on X-axis is better. Lower number of iterations
on Y-axis is better.

chosen for each case separately. In SA cases, only the L variable is varied.

The second bias issue comes from the effectiveness of GA crossover that should com-
bine solutions to create new ones. The crossover algorithm is not specifically tuned
for this problem. We use uniform crossover because it is unbiased to any particular
problem. For this reason it is also not aware task mapping details. Many task mapping
papers use either the one-point or two-point crossover with GA. These heuristics are
affected by the ordering, i.e. the numbering, of tasks themselves. The optimization
algorithm should ideally not depend on the permutation of numberings in which the
tasks are coded into chromosome. However, an intelligent heuristics could determine
a good permutation where one- or two-point crossovers are efficient. Detailed appli-
cation analysis could reveal dependencies of tasks that could be exploited to create
an application specific crossover heuristics. This is, however, a research interest we
are not pursuing. Wider applicability of a mapping heuristics requires that intrinsic
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details of specific problems are not assumed.

Experiment data, scripts and instructions how to repeat and verify the GA experi-
ment is available at DCS task mapper web page [22] under the section “Experimental
data”.



7. RECOMMENDATIONS FOR USING SIMULATED ANNEALING

This chapter lists recommendations for publishing about SA and using it for task
mapping.

7.1 On publishing results for task mapping with Simulated Annealing

There are several guidelines that apply for publishing data on parallel computation [5]
and heuristics in general [6]. We present recommendations for publishing results on
task mapping with SA:

1. Report pseudocode for the algorithm. A textual description of the algorithm
is often too ambiguous for reproducing the experiment. Specify temperature
scale, cost, move, and acceptance functions.

2. Report numerical values for constants for the algorithm. Specify temperature
scaling factor, initial and final temperatures and the number of iterations per
temperature level. These are needed to re-produce the same results.

3. Report the rate of convergence. Plot the number of mapping iterations against
optimized values (objective space). Report mean and median number of itera-
tions.

4. Compare the heuristics with a global optimum for a trivial problem that can
be solved by brute force. Report the proportion of optimization runs, and the
number of iterations, that reach within p percent of the global optimum.

5. Report the optimization time per iteration. This is more or less the simulation
time per mapping.
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7.2 Recommended practices for task mapping with Simulated Annealing

We recommend following practices for task mapping with SA:

1. Choose the number of iterations per temperature level L ≥ α = N(M − 1),
where N is the number of tasks and M is the number of PEs. α is the number
of neighboring mapping solutions. The number of mapping iterations should
grow as a function of problem complexity parameters N and M unless experi-
mental results indicate good results for a specific L value. Publications of the
Thesis show convergence results for using α and its multipliers. [20] suggests
that the number of mapping iterations per temperature level should be a multi-
ple of α.

2. Use geometric temperature schedule with 0.90≤ q≤ 0.99. Most known results
use values in this range. Our experiments have found q = 0.95 to be a suitable
value. The L value has to be adjusted with the q variable. Dropping q from
0.95 to 0.90 implies that the number of iterations in a given temperature range
halves unless L is doubled.

3. Use a systematic method for choosing the initial and final temperatures, e.g.
one published in [P2] [P6] [P7] [9] [8] [20] [24] [45] [56] [88]. A systematic
method decreases manual work and the risk of careless parameter selection. A
systematic method may also decrease optimization time.

4. Use a normalized exponential acceptance function (5). This implies a nor-
malized temperature range T ∈ (0,1] which makes annealing schedules more
comparable between problems. It is easy to select a safe but wasteful range
when temperature is normalized, e.g. T ∈ (0.0001,1]. It is also easier to add
new influencing factors into the cost function since the initial cost does not di-
rectly affect the selection of initial temperature when a normalized acceptance
function is used. Instead, the relative change in cost function value in moves is
a factor in the selection of initial temperature.

5. Use the ST (single task) move function 3.3.1, if in doubt. It is the most common
heuristics which makes also the comparison easier to other works.

6. Run the heuristics several times for a given problem. The solution quality
variance can be significant. As an example, Table 11 shows the probability
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of convergence. The values can be used to compute a risk for not reaching a
solution within p percent of the optimum in a given number of repetitions.

7. Record the iteration number when the best solution was reached. If the termi-
nation iteration number is much higher than the best solution iteration, maybe
the annealing can be stopped earlier without sacrificing reliability.



76 7. Recommendations for using Simulated Annealing



8. ON RELEVANCE OF THE THESIS

Table 8 displays citations to the Publications of the Thesis. We found 26 publica-
tions that refer to these by using Google’s normal and scholar search [71], IEEE
Xplore [33] and ACM digital library [1]. There are 14 publications that use or apply
a method presented in publications of this Thesis. Some of these use a part of the
method, and possibly modify it to their needs. [P2] is the most applied paper with 6
publications using or adopting a method from it. [P3] is the most cited paper, with 14
citations.

Table 21. Table of citations to the publications in this Thesis. “Citations” column indicates
publications that refer to the given paper on the “Publication” column. Third
column indicates which of these papers use or apply a method presented in the
paper. The method may be used in a modified form.

Publication Citations Uses or applies a method
proposed in the paper

P1 [3] [38] [39] [3] [38] [39]
P2 [10] [11] [29] [32] [61] [67] [68] [69] [10] [11] [16] [29] [61] [67]

[69]
P3 [13] [14] [15] [18] [19] [36] [48] [53] [53] [73] [75] [76]

[73] [74] [75] [76] [79] [80] [84]
P4 [3] [65] [83] [3]
P5 None None
P6 [32] [65] [67] [32] [67]
P7 None None

SA method proposed in [P1] was intended for Koski [39] design framework for MP-
SoCs. The method was used in several Koski related publications [3] [38] [39]. The
method was slow due to broad annealing temperature range. This lead to development



78 8. On relevance of the Thesis

of automatic parameter selection method proposed in [P2]. Optimal subset mapping
(OSM) from [P4] is also included in the Koski design framework.

SA parameter selection method proposed in [P2] was applied in [10] [11] [16] [29]
[61] [67] [69].

Caffarena [10] [11] binds operations to FPGA resources to minimize area. They use
the normalized exponential acceptor (5) to normalize the temperature range which
eases the temperature selection.

Chang [16] mapped applications onto a NoC where physical defects were detoured
by rewiring. Rewriting required remapping the application to new physical tiles on
the NoC by using the parameter selection method proposed in [P2].

Greenfield [29] mapped 250 random task graphs to a NoC with 8x8 array of tiles by
using SA and the proposed parameter selection method. The effect of the method
was not reported.

Ravindran [61] and Satish [67] followed techniques from the parameter selection
method of Koch [45] and [P2], but they are vague in details. The algorithm they
propose mostly resembles the Koch method. Satish also reports using the initial
and final temperature calculations from [P6]. Ravindran and Satish report that SA is
found to be better than DLS and DA for large task graphs with irregular architectures,
but DA does better for smaller task graphs.

Satish [69] used the parameter selection method from [P2] to optimize the scheduling
for tasks and CPU-GPU data transfers. Their problem space is scheduling rather
than mapping, but they only had to replace the cost and move functions to use the
proposed method. They applied the method to Edge detection and convolutional
neural networks on large data sets. The edge detection problem had 8 tasks and 13
data items. Two convolutional neural networks had 740 tasks and 1134 data items,
and 1600 tasks and 2434 data items. The SA approach won the heuristic depth first
search approach published in [82] by a performance factor 2. SA decreased data
transfers by a factor of 30 compared to unoptimized implementation. The result was
within 16% of the global optimum. Jitter was a problematic side effect of stochastic
SA algorithm. The standard deviation of the SA results was 4% of the mean value.

SA method in [P3] was applied in Lee [53] by using the normalized inverse exponen-
tial acceptance function (2) and the L value. The SA algorithm was compared with
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a proposed task mapping algorithm. The proposed algorithm decreased communica-
tion costs by 2% on average compared to SA. The proposed algorithm was specifi-
cally tuned to the problem by adding detailed knowledge of the problem space, such
as the topology of the NoC. The SA algorithm was used as a generic task mapping
algorithm without the details.

Shafik [73] used the SA method in [P3] to map task graphs to optimize performance,
power and soft-errors. When performance and/or power was optimized separately or
simultaneously, the SA method gave better results than Shafik’s proposed method.
Shafik’s method factored soft-errors into the cost function, but left them out of SA
cost function. Consequently, Shafik’s method was better at solving soft-errors. It was
not reported how SA would perform with soft-errors included in the cost function.
It was reported that SA gave 5% better power, or 10% better performance than the
proposed method, when power and performance were optimized separately. Simulta-
neous SA optimization of power and performance showed 2% better power and 3%
better performance compared to the proposed method. Shafik also applies the SA
method in [75] and [76].

Houshmand [32] uses the parameterization method from [P2] and initial temperature
calculation from [P6]. They propose an improvement to these methods by applying
parallelism to SA exploration. However, results are inconclusive. Proposed method
is presented as a broken pseudocode, which makes reproducing the benchmark un-
certain and hard. The comparison between the original and the improved method did
not show relative efficiency. The improved method used 5 to 10 times the mapping
iterations compared to the original method. Results indicate that the original method
has better relative efficiency. It was not shown how the original method would have
performed with 5 to 10 times the iterations. This could be done by repeatedly running
the algorithm 5 to 10 times, or possibly scaling the L value by a factor from 5 to 10.
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9. CONCLUSIONS

9.1 Main results

The Thesis collects together a state of the art survey on SA for task mapping, new
data on annealing convergence and recommendations for using SA in task mapping.
The results presented in the Thesis are still a small step towards understanding the
parameter selection and the convergence process.

The first research question in Chapter 4 was how to select optimization parameters
for a given point in DSE problem space. This research question was answered in the
recommendations in Chapter 7 based on the survey in Chapter 3, publications [P1-7]
and experiments in Chapter 6.

The second research question was how many mapping iterations are needed to reach
a given solution quality. Chapter 6 reported new information about converge rates
with respect to global optimum by estimating the number of iterations for 32 node
random task graphs. This information helps task mappers decide on the SA iterations
to reach a given level of solution quality. As far as we know, 32 nodes in this work is
the largest random task graph for which global optimum has been determined. This
bound is not likely to grow fast as the mapping problem is NP.

SA was also found to be over 50% more efficient than GA in a task mapping exper-
iment. SA and GA are both popular heuristics for task mapping, but neither has yet
won over the other.

The third research question was how does each parameter of the algorithm affect the
convergence rate. Table 12 displayed the effect of L value to the expected number of
iterations to reach a given solution quality. The proposed L = N(M− 1) in SA+AT
was most efficient for a quality target within 4 to 5 percent of the global optimum for
32 nodes and 2 PEs. However, doubling the proposed value to L = 2N(M− 1) was
the most efficient value to reach within 0 to 3 percent of the global optimum.
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Section 6.2.1 presented experiments where exponential acceptors were found better
than inverse exponential acceptors. Therefore, we recommend exponential function
instead of the inverse exponential function.

Section 6.2.2 presented an experiment where no significant effect was found between
the solution quality and the zero transition probability in the acceptance function.

The fourth research question was how to speedup convergence rate. SA optimization
process resembles Monte Carlo optimization in high temperatures that converges very
slowly. The Monte Carlo effect is compared with RM in publications [P4] [P7]. Any
optimization algorithm should do better than RM unless the problem lacks tractability
for systematic solutions. One intractable case is presented in [P7].

[P2] proposes an initial temperature computation method that avoids most of the
Monte Carlo phase. The paper also proposes a final temperature computation method
that stops optimization when optimization is mostly greedy and the algorithm may
get stuck into a local optimum. The method is further extended to KPNs in [P7]. The
final temperature computation is also refined to save optimization time by filtering
out tasks with insignificant amount of computation.

[P4] presents a rapidly converging mapping algorithm. The algorithm does not ob-
tain good solution quality, but it could be used to obtain an initial solution for more
expensive algorithms.

Section 6.1 presented data on L value effect on trade-off between run-time and solu-
tion quality. This information can be used to estimate the optimizing effort for graphs
with up to 32 nodes. The number of required mapping iterations are given to justify
expenses in optimization time to reach a given level of quality.

The fifth research question was how often does the algorithm converge to a given
solution quality. Section 6.1 helps task mapper to target a specific distance from the
global optimum and gives the probability for annealing within that distance.

There are several aspects that have not been addresses in the Thesis. Future work
needs to be done on following aspects:

• It lacks experiments on real-world applications modeled as task graphs

• The resemblance between random task graphs and real-world applications is
not shown
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• Iterations per temperature level should not be constant. Less iterations should
be used in the early Monte Carlo phase of annealing, as random mapping con-
verges very slowly.

• Architectures and interconnects used in simulations were mostly homogeneous.
Heterogeneous architectures make the problem space more complex, and thus
might reveal convergence problems in proposed optimization algorithms.

• The proposed methods have not been tested on real systems which raises doubt
on the validity of testing and simulation models presented

This Work on task mapping could be applied on other problem fields, such as a job
shop scheduling problem [52]. Task mapping can be generalized to any problem
where several objects are placed on several resources. For example, a series of tasks
can be mapped and scheduled to workers and robots.
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Hämäläinen, T. D., Riihimäki, J. and Kuusilinna, K., “UML-Based Multipro-
cessor SoC Design Framework”, ACM Transactions on Embedded Computing
Systems, Vol. 5, No. 2, pp. 281-320, 2006.
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Abstract— Mapping of applications on multiprocessor System-
on-Chip is a crucial step in the system design to optimize the
performance, energy and memory constraints at the same time.
The problem is formulated as finding solutions to an objective
function of the algorithm performing the mapping and scheduling
under strict constraints. Our solution is a new hybrid algorithm
that distributes the computational tasks modeled as static acyclic
task graphs The algorithm uses simulated annealing and group
migration algorithms consecutively and it combines a non-greedy
global and greedy local optimization techniques to have good
properties of both ways. The algorithm begins as coarse grain
optimization and moves towards fine grained optimization. As a
case study we used ten 50-node graphs from the Standard Task
Graph Set and averaged results over 100 optimization runs. The
hybrid algorithm gives 8% better execution time on a system
with four processing elements compared to simulated annealing.
In addition, the number of iterations increased only moderately,
which justifies the new algorithm in SoC design.

I. INTRODUCTION

Contemporary embedded system applications demand in-
creasing computing power and reduced energy consumption
at the same time. Multiprocessor System-on-Chip implemen-
tations have become more popular since it is often more
reasonable to use several low clock rate processors than a
single high-performance one. In addition, the overall perfor-
mance can be increased by distributing processing on several
microprocessors raising the level of parallelism.

However, efficient multiprocessor SoC implementation re-
quires exploration to find an optimal architecture as well as
mapping and scheduling of the application on the architecture.
This, in turn, calls for optimization algorithms in which the
cost function consists of execution time, communication time,
memory, energy consumption and silicon area constraints, for
example. The optimal result is obtained in a number of iter-
ations, which should be minimized to make the optimization
itself feasible. One iteration round consists of application task
mapping, scheduling and as a result of that, evaluation of the
cost function. In a large system this can take even days.

The principal problem is that in general the mapping of an
application onto a multiprocessor system is an NP-problem.
Thus verifying that any given solution is an optimum needs
exponential time and/or space from the optimization algorithm.
Fortunately it is possible in practice to device heuristics that
can reach near optimal results in polynomial time and space
for common applications.

We model the SoC applications as static acyclic task graphs
(STGs) in this papers. Distributing STGs to speedup the
execution time is a well researched subject [1], but multipro-
cessors SoC architectures represent a new problem domain
with significantly more requirements compared to traditional
multiprocessor systems.

This paper presents a new algorithm especially targeted
to map and schedule applications for multiprocessor SoCs
in an optimal way. In this paper the target is to optimize
the execution time, but the algorithm is also capable of
optimizing memory and energy consumption compared to
previous proposals.

The hybrid algorithm applies a non-greedy global opti-
mization technique known as simulated annealing (SA) and
a greedy local optimization technique known as the group
migration (GM) algorithm.

The basic concepts and the related work of task paralleliza-
tion, SA and GM are presented in Section II. The contribution
of this paper is the hybrid task mapping algorithm, which is
described in Section III. The algorithm was evaluated with a
set of task graphs and compared to the pure SA algorithm as
reported in Section IV. Finally, the concluding remarks are
given.

II. RELATED WORK

Wild et. al considered simulated annealing and tabu search
for SoC application parallelization [2]. Their algorithm uses
a special critical path method to identify important tasks
that need to be relocated. Also, Vahid [3] considered pre-
partitioning to shrink optimization search space, and in ad-
dition they apply various clustering algorithms, such as group
migration algorithm, to speedup the execution time. This
is similar approach to us, in which we enhance simulated
annealing with the group migration. Lei et al. [4] considered
a two-step genetic algorithm for mapping SoC applications to
speedup the execution time. Their approach starts with coarse
grain optimizations and continues with fine grain optimizations
as in our approach. Compared to our algorithm, they have
stochastic algorithms in both steps. Our algorithm adds more
reliability as the second step is deterministic.
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Fig. 1. An example STG with computational costs in nodes and communi-
cation costs at edges. Node F is the result node that is data dependent on all
other nodes

A. Static Task Graphs

Nodes of the STG are finite deterministic computational
tasks, and edges represent data dependencies between the
nodes. Computational nodes block until their data depen-
dencies are resolved. Node weights represent the amount of
computation associated with a node. Edge weights represent
amount of communication needed to transfer results between
the nodes.

Fig. 1 shows an STG example. Node F is the result node
which is data dependent on all other nodes. Nodes A, C and
D are nodes without data dependencies, and hence they are
initially ready to run.

Each node is mapped to a specific processing element in
the SoC. The STG is fully deterministic, meaning that the
complexity of the computational task is known in advance,
and thus no load balancing technique, such as task migration,
is not needed. The distribution is done at compile time, and
the run-time is deterministic. When a processing element has
been chosen for a node it is necessary to schedule the STG on
the system. Schedule determines execution order and timing
of execution for each processing element. The scheduler has to
take into account the delays associated with nodes and edges,
and data dependencies which affect the execution order.

B. Simulated Annealing

SA is a probabilistic non-greedy algorithm [5] that explores
search space of a problem by annealing from a high to a low
temperature state. The greediness of the algorithm increases as
the temperature decreases, being almost greedy at the end of
annealing. The algorithm always accepts a move into a better
state, but also into a worse state with a changing probability.
This probability decreases along with the temperature, and
thus the algorithm becomes greedier. The algorithm terminates
when the maximum number of iterations have been made, or
too many consecutive moves have been rejected.

Fig. 2 shows the pseudo-code of the SA algorithm used in
the hybrid algorithm. Implementation specific issues compared
to the original algorithm are mentioned in Section IV-A. The
Cost function evaluates badness of a specific mapping by
calling the scheduler to determine execution time. S0 is the
initial state of the system, and T0 is the initial temperature.
Temperature–Cooling function computes a new temperature
as a function of initial temperature T0 and iteration i. Move
function makes a random move to another state. Random
function returns a random value from the interval [0, 1). Prob

SIMULATED-ANNEALING(S0, T0)
1 S ← S0

2 C ← COST(S0)
3 Sbest ← S
4 Cbest ← C
5 Rejects← 0
6 for i← 1 to imax

7 do T ← TEMPERATURE-COOLING(T0, i)
8 Snew ← MOVE(S, T )
9 Cnew ← COST(Snew)

10 r ← RANDOM()
11 p← PROB(Cnew − C, T )
12 if Cnew < C or r < p
13 then if Cnew < Cbest

14 then Sbest ← Snew

15 Cbest ← Cnew

16 S ← Snew

17 C ← Cnew

18 Rejects← 0
19 else Rejects← Rejects + 1
20 if Rejects ≥ Rejectsmax

21 then break
22 return Sbest

Fig. 2. Pseudo-code of the simulated annealing algorithm

function computes a probability that a move that increases the
cost is accepted.

C. Group Migration Algorithm

Group migration algorithm ([3], [6]) is a greedy local
search technique that changes mapping of STG nodes one by
one, accepting only moves that improve current solution as
determined by the scheduler.

Fig. 3 shows pseudo-code of the GM algorithm used in
the hybrid algorithm. The function Group–Migration calls
the function GM–Round as long as the solution improves.
Function GM–Round tries to move each task one by one from
its PE to all other PEs. If it finds a move that decreases cost,
it records the change, and restores the original mapping and
goes to the next task. After all tasks have been tried, it takes
the best individual move, applies that move on the mapping,
and marks the associated task as non-movable. Any task that
has been marked non-movable will not be considered as a
movable candidate again. Then the algorithm starts from the
beginning, trying each movable task again. This is continued
until no cost decrease is found.

III. THE PROPOSED HYBRID ALGORITHM

A. Mapping

The hybrid algorithm presented in this paper uses SA and
GM algorithms to support each other. Fig. 4 shows pseudo-
code of the main optimization loop. Initially the mapping is
set by the function Fast–Premapping shown in Fig. 5. Fast
premapping distributes node mappings so that parents of a



GROUP-MIGRATION(S)
1 while True
2 do Snew ← GM-ROUND(S)
3 if COST(Snew) < COST(S)
4 then S ← Snew

5 else break
6 return S

GM-ROUND(S0)
1 S ← S0

2 Mcost ← COST(S)
3 Moved← [False] ∗Ntasks

4 for i← 1 to Ntasks

5 do Mtask = NIL
6 MPE = NIL
7 for t← 0 to Ntasks − 1
8 do if Moved[t] = True
9 then continue

10 Sold ← S
11 for A← 0 to NPEs − 1
12 do if A = Aold

13 then continue
14 S[t]← A
15 if COST(S) < Mcost

16 then continue
17 Mcost = COST(S)
18 Mtask = t
19 Magent = A
20 S ← Sold

21 if Magent = NIL
22 then break
23 Moved[Mtask]← True
24 S[Mtask]←Magent

25 return S

Fig. 3. Pseudo-code of the group migration algorithm

child are on different PEs. As an example, nodes in the Fig. 1
would be premapped to 3 PE system as follows: F 7→ PE 1,
B 7→ 1, E 7→ 2, C 7→ 3, A 7→ 1, and D 7→ 2. SA and
GM algorithms are called sequentially until the optimization
terminates. There are two specialties in this approach.

First, SA is called many times, but with each time the
initial temperature is half of that of the previous iteration.
The SA algorithm itself can visit a good state but leave it
for a worse state with certain probability, since the algorithm
is not totally greedy. To overcome this deficiency our SA
implementation returns the best state visited from any SA
algorithm invocation, and the next call of SA begins from
the best known state. Furthermore, since initial temperature is
halved after each invocation, the algorithm becomes greedier
during the optimization process. This process is iterated until
a final temperature Tfinal has been reached. This enables both
fine and coarse grain search of the state space with reasonable
optimization cost. At each invocation it becomes harder for

OPTIMIZATION()
1 S ← FAST-PREMAPPING()
2 T ← 1.0
3 while T > Tfinal

4 do S ← SIMULATED-ANNEALING(S, T )
5 if UseGroupMigration = True
6 then S ← GROUP-MIGRATION(S)
7 T ← T

2
8 return S

Fig. 4. Pseudo-code of the main optimization loop

FAST-PREMAPPING()
1 Assigned← [False] ∗Ntasks

2 S ← [NIL] ∗Ntasks

3 S[ExitNode]← 0
4 F ← EmptyF ifo
5 FIFO-PUSH(F,ExitNode)
6 while F 6= EmptyF ifo
7 do n← FIFO-PULL(F )
8 A← S[node]
9 for each parent p of node n

10 do if Assigned[p] = True
11 then continue
12 Assigned[p] = True
13 S[p] = A
14 FIFO-PUSH(F, p)
15 A← (A + 1) mod Nagents

16 return S

Fig. 5. Pseudo-code of the fast premapping algorithm

the algorithm to make drastic jumps in the state space.

B. Scheduling

This paper considers node weights in task graphs as exe-
cution time to perform computation on a processing element
and edge weights as time to transfer data between PEs in
a SoC communication network. The scheduler used in this
system is a B-level scheduler [1]. Since nodes are mapped
before scheduling, B-level priorities associated with the nodes
remain constant during the scheduling. This approach accel-
erates optimization, because B-level priorities need not to
be recalculated. There exists better scheduling algorithms in
the sense that they produce shorter schedules, but they are
more expensive in optimization time [7]. When scheduling is
finished the total execution time of the STG is known, and
thus the cost of the mapping can be evaluated.

IV. RESULTS

A. Case Study Arrangements

The case study experiment used 10 random graphs, each
having 50 nodes, from the Standard Task Graph set [8]. We
used random graphs to evaluate optimization algorithms as



fairly as possible. Non-random applications may well be rele-
vant for common applications, but they are dangerously biased
for mapping algorithm comparison. Investigating algorithm
bias and classifying computational tasks based on bias are not
topics in this paper. Random graphs have the property to be
neutral of the application, and thus mapping algorithms that do
well on random graphs will do well on average applications.

Optimization was run 10 times independently for each task
graph. Thus 100 optimization runs were executed for both
algorithms. The objective function for optimization was the
execution time of a mapped task graph. The random graphs
did not have exploitable parallelism for more than 4 PEs so
that was chosen as the maximum number of PEs for the
experiment. Thus speedup of mapped task graphs was obtained
for 2, 3, and 4 PEs.

The SoC was a message passing system where each PE
had some local memory, but no shared memory. The PEs were
interconnected with a single dynamically arbitrated shared bus
that limits the SoC performance because of bus contention.

The optimizations were executed on a 10 machine Gentoo
Linux cluster. Optimization runs were distributed by using
rsync to copy input and output files between machines and
SSH to execute shell scripts remotely. Initially one machine
uploaded input files and optimization software to all machines,
and then commanded each machine to start optimization
software. After optimization was finished on all machines, the
results were downloaded back. All machines were 2.8 GHz
Intel Pentium 4 machines with 1 GiB of memory. Execution
time for optimization is given in Section IV-C.

The optimization system was written with Python language.
It is an object-oriented dynamically typed language that is
interpreted during execution. Python language was chosen to
save development time with object-oriented high-level tech-
niques. The optimization system code is highly modular in
object-oriented fashion.

The implementation of simulated annealing algorithm has
the following specific issues. Temperature–Cooling function
shown in Fig. 2. computes a new temperature with formula
T0 ∗pi, where p is the percentage of temperature preserved on
each iteration. Move function makes a random state change so
that NtasksT0 random tasks are moved separately to a random
PE, where Ntasks is the number of tasks in the task graph.
Prob function is

Prob(∆C, T ) =
1

1 + exp( ∆C
0.5C0T

)
,

where C0 = Cost(S0). The C0 term is a special normalization
factor chosen to make annealing parameters more compatible
with different graphs.

B. SA and GM Iterations

Fig. 6 shows the progress of annealing without the group
migration algorithm for a random 50-node STG. The cost
function is the execution time for executing the mapped graph
on two processing elements. This figure shows how each
invocation of SA improves the overall solution, but improving
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Fig. 6. Simulated annealing of a 50 node random STG. Cost function is the
execution time for executing the mapped graph on two processing elements
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Fig. 7. Simulated annealing combined with group migration algorithm of a
50 node random STG

is decelerated between each call. The first downfall is the
largest, and after that downfalls are less drastic.

Second, SA and GM are used to complement each other.
SA can climb from a local minima to reach a global minimum.
SA does not search for local minima, so it does not exploit
local similarity to reach better states by exploring local neigh-
borhoods. The GM algorithm is used to locally optimize SA
solutions as far as possible. Fig. 7 shows progress of combined
SA and GM optimization. At around iteration 2250 the GM
algorithm is able find a locally better solution and thus the
objective function value decreases. SA might not have found
that solution. At around iteration 8300 GM finds the best
solution by local optimization.

C. Hybrid Algorithm

The hybrid algorithm was compared with pure simulated
annealing by obtaining speedups for parallelized task graphs.
Speedup is defined as to/tp, where to is the original execution
time of the mapped graph and tp is the parallelized execution
time.



TABLE I
AVERAGED SPEEDUPS AND NUMBER OF COST FUNCTION EVALUATIONS

FOR ALGORITHMS

2 PEs 3 PEs 4 PEs
SA speedup 1.467 1.901 2.103
Hybrid speedup 1.488 1.977 2.278
Difference-% 1.4 4.0 8.3
SA cost evaluations 1298k 857k 767k
Hybrid cost evaluations 1313k 1047k 1322k
Evaluations difference-% 3.6 14.9 34.5
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Fig. 8. Per task graph speedups for SA algorithm with 2, 3, and 4 processing
elements

The results are shown in Table I. The advantage of the
hybrid algorithm increases as the number of PEs increases.
With 2 PEs, the benefit is small, but with 3 PEs it is 4.0%
better speedup on average for 10 graphs with 10 independent
runs. With 4 PEs the benefit is 8.3% better speedup (0.175
speedup units). However, greater speedup is achieved with the
cost of optimization time.

Fig. 8 shows speedup values for each graph when SA
algorithm was used for optimization. There is 10 bar sets in
the figure, and each bar set presents 3 values for 2, 3, and 4
processing elements respectively. All values are averaged over
10 independent runs. Fig. 9 shows same values for the hybrid
algorithm.

Optimization time is determined by the number of cost
function evaluations as tabulated in Table I. The hybrid
algorithm has 3.6%, 14.9%, and 34.5% more cost function
evaluations for 2, 3, and 4 PEs respectively. Total running
time for optimizations was 40036 seconds for SA, and 62007
seconds for the hybrid algorithm. Thus hybrid algorithm ran
55% longer in wall time. Compared to other proposals [2], the
average improvement of 8% is considered very good.

V. CONCLUSION

The new method applies both local and global optimization
techniques to speedup execution time of static task graphs. The
new method is a hybrid algorithm that combines simulated
annealing and group migration algorithms in a novel fashion.
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Fig. 9. Per task graph speedups for the hybrid algorithm with 2, 3, and 4
processing elements

The algorithm takes advantage of both greedy and non-greedy
optimization techniques.

Pure simulated annealing and the hybrid algorithm were
compared. The results show 8.3% speedup increase for the
hybrid algorithm with 4 PEs averaged over 100 test runs with
the expense of 34.5% iteration rounds.

Further research is needed to investigate simulated anneal-
ing heuristics that explore new states in the mapping space. A
good choice of mapping heuristics can improve solutions and
accelerate convergence, and it is easily applied into the existing
system. Further research should also investigate how this
method applies to optimizing other factors in a SoC. Execution
time is one factor, and memory and power consumption are
others.
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Abstract— Mapping an application on Multiprocessor System-
on-Chip (MPSoC) is a crucial step in architecture exploration.
The problem is to minimize optimization effort and application
execution time. Simulated annealing is a versatile algorithm
for hard optimization problems, such as task distribution on
MPSoCs. We propose a new method of automatically selecting
parameters for a modified simulated annealing algorithm to save
optimization effort. The method determines a proper annealing
schedule and transition probabilities for simulated annealing,
which makes the algorithm scalable with respect to application
and platform size. Applications are modeled as static acyclic task
graphs which are mapped to an MPSoC. The parameter selection
method is validated by extensive simulations with 50 and 300
node graphs from the Standard Graph Set.

I. INTRODUCTION

Efficient MPSoC implementation requires exploration to
find an optimal architecture as well as mapping and scheduling
of the application on the architecture. The large design space
must be pruned systematically, since the exploration of the
whole design space is not feasible. This, in turn, calls for
optimization algorithms in which the cost function consists
of execution time, communication time, memory, energy
consumption and silicon area constraints, for example. The
iterative algorithms evaluate a number of application mappings
for each resource allocation candidate. For each mapping, an
application schedule is determined to evaluate the cost.

This paper presents a new method to automatically select
parameters for the simulated annealing (SA) algorithm [1].
Parameter selection is needed because SA is a meta-algorithm
that doesn’t specify all the necessary details. Our algorithm
selects annealing schedule and transition probabilities to maxi-
mize application performance and minimize optimization time.
The algorithm is targeted to map and schedule applications for
MPSoCs. However, the algorithm is not limited to MPSoC
architectures or performance optimization.

The SoC applications are modeled as acyclic static task
graphs (STGs) in this paper. Parallelizing STGs to speedup the
execution time is a well researched subject [2], but MPSoC
architectures present more requirements, such as application
execution time estimation for architecture exploration, com-
pared to traditional multiprocessor systems. Nodes of the
STG are finite deterministic computational tasks, and edges
represent dependencies between the nodes. Computational
nodes block until their data dependencies are resolved, i.e.

they have all needed data. Node weights represent the amount
of computation associated with a node. Edge weights represent
amount of communication needed to transfer results between
the nodes. The details of task graph parallelization for an
MPSoC can be found, for example, in [3]. SA is used to place
all tasks onto specific processing elements (PEs) to parallelize
execution. Alternative solutions for the problen can be found,
for example, in [2].

The basic concepts and the related work of task paralleliza-
tion with SA is presented in Section II. The contribution of
this paper is adaptation and parametrization of SA for task
mapping, which is described in Section III. The algorithm was
evaluated with a set of task graphs and compared to the pure
SA algorithm as reported in Section IV. Finally, the concluding
remarks are given.

II. RELATED WORK

A. Algorithms for Task Mapping

Architecture exploration needs automatic tuning of opti-
mization parameters for architectures of various sizes. Without
scaling, algorithm may spend excessive time optimizing a
small systems or result in a sub-optimal solution for a large
system. Wild et al. [4] compared SA, Tabu Search (TS) [5] and
various other algorithms for task distribution. The parameter
selection for SA had geometric annealing schedule that did
not consider application or system architecture size, and thus
did not scale up to bigger problems without manual tuning of
parameters.

Braun et al. [6] compared 11 optimization algorithms for
task distribution. TS outperformed SA in [4], but was worse
in [6], which can be attributed to different parameter selection
used. Braun’s method has a proper initial temperature selection
for SA to normalize transition probabilities, but their annealing
schedule does not scale up with application or system size,
making both [4] and [6] unsuitable for architecture exporation.

Our work presents a deterministic method for deciding
efficient annealing schedule and transition probabilities to
minimize iterations needed for SA, and, hence, allows efficient
architecture exploration also to large systems. The method
determines proper initial and final temperatures and the num-
ber of necessary iterations per temperature level to avoid
unnecessary optimization iterations, while keeping application

1-4244-0622-6/06/$20.00 ©2006 IEEE.  



performance close to maximum. This will save optimization
time and thus speed up architecture exploration.

B. Simulated Annealing

SA is a probabilistic non-greedy algorithm [1] that explores
search space of a problem by annealing from a high to
a low temperature state. The algorithm always accepts a
move into a better state, but also into a worse state with a
changing probability. This probability decreases along with
the temperature, and thus the algorithm becomes greedier. The
algorithm terminates when the final temperature is reached and
sufficient number of consecutive moves have been rejected.

Fig. 1 shows the pseudo-code of the SA algorithm used with
the new method for parameter selection. Implementation spe-
cific issues compared to the original algorithm are explained
in Section III. The Cost function evaluates execution time of
a specific mapping by calling the scheduler. S0 is the initial
mapping of the system, T0 is the initial temperature, and
S and T are current mapping and temperature, respectively.
New Temperature Cooling function, a contribution of
this paper, computes a new temperature as a function of initial
temperature T0 and iteration i. R is the number of consecutive
rejects. Move function moves a random task to a random PE,
different than the original PE. Random function returns an
uniform random value from the interval [0, 1). New Prob
function, a contribution of this paper, computes a probability
for accepting a move that increases the cost. Rmax is the
maximum number of consecutive rejections allowed after the
final temperature has been reached.

III. THE PARAMETER SELECTION METHOD

The parameter selection method configures the annealing
schedule and acceptance probability functions.
New Temperature Cooling function is chosen so that

annealing schedule length is proportional to application and
system architecture size. Moreover the initial temperature T0

and final temperature Tf must be in the relevant range to affect
acceptance probabilities efficiently. The method uses

New Temperature Cooling(T0, i) = T0 ∗ qb
i
L c,

where L is the number of mapping iterations per temperature
level and q is the proportion of temperature preserved after
each temperature level. This paper uses q = 0.95. Determining
proper L value is important to anneal more iterations for larger
applications and systems. This method uses

L = N(M − 1),

where N is the number of tasks and M is the number of
processors in the system. Also, Rmax = L.

A traditionally used acceptance function is

Trad Prob(∆C, T ) =
1

1 + exp(∆C
T )

,

but then probability range for accepting moves is not adjusted
to a given task graphs because ∆C is not normalized. The
acceptance probability function used in this method has a

SIMULATED ANNEALING(S0, T0)
1 S ← S0

2 C ← COST(S0)
3 Sbest ← S
4 Cbest ← C
5 R← 0
6 for i← 0 to ∞
7 do T ← NEW TEMPERATURE COOLING(T0, i)
8 Snew ← MOVE(S, T )
9 Cnew ← COST(Snew)

10 ∆C ← Cnew − C
11 r ← RANDOM()
12 p← NEW PROB(∆C, T )
13 if ∆C < 0 or r < p
14 then if Cnew < Cbest

15 then Sbest ← Snew

16 Cbest ← Cnew

17 S ← Snew

18 C ← Cnew

19 R← 0
20 else if T ≤ Tf

21 then R← R + 1
22 if R ≥ Rmax

23 then break
24 return Sbest

Fig. 1. Pseudo-code of the simulated annealing algorithm

normalization factor to consider only relative cost function
changes. Relative cost function change adapts automatically to
different cost function value ranges and graphs with different
task execution times.

New Prob(∆C, T ) =
1

1 + exp( ∆C
0.5C0T

)
,

where C0 = Cost(S0), the initial cost of the optimized
system. Figure 2 shows relative acceptance probabilities.

The initial temperature chosen by the method is

TP
0 =

ktmax

tminsum
,

where tmax is the maximum execution time for any task on
any processor, tminsum the sum of execution times for all tasks
on the fastest processor in the system, and k ≥ 1 is a constant.
Constant k, which should practically be less than 10, gives a
temperature margin for safety. Section IV-A will show that k =
1 is sufficient in our experiment. The rationale is choosing an
initial temperature where the biggest single task will have a fair
transition probability of being moved from one PE to another.
The transition probabilities with respect to temperature and
∆Cr = ∆C

C0
can be seen in Figure 2. Section IV will show that

efficient annealing happens in the temperature range predicted
by the method. The chosen final temperature is

TP
f =

tmin

ktmaxsum
,
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Fig. 2. Probabilities for the normalized probability function: ∆Cr = ∆C
C0

where tmin is the minimum execution time for any task on any
processor and tmaxsum the sum of execution times for all tasks
on the slowest processor in the system. Choosing initial and
final temperature properly will save optimization iterations.
On too big a temperature, the optimization is practically
Monte Carlo optimization because it accepts moves to worse
positions with a high probability. And thus, it will converge
very slowly to optimum because the search space size is in
O(MN ). Also, too low a probability reduces the annealing
to greedy optimization. Greedy optimization becomes useless
after a short time because it can not espace local minima.

IV. RESULTS

A. Experiment

The experiment uses 10 random graphs with 50 nodes
and 10 random graphs with 300 nodes from the Standard
Task Graph set [7] to validate that the parameter selection
method chooses good acceptance probabilities (New Prob)
and annealing schedule (T P

0 , TP
f , and L). Random graphs

are used to evaluate optimization algorithms as fairly as
possible. Non-random applications may well be relevant for
common applications, but they are dangerously biased for
general parameter estimation. Investigating algorithm bias and
classifying computational tasks based on the bias are not topics
of this paper. Random graphs have the property to be neutral
of the application.

Optimization was run 10 times independently for each
task graph. Each graph was distributed onto 2-8 PEs. Each
anneal was run from a high temperature T0 = 1.0 to a
low temperature Tf = 10−4 with 13 different L values.
The experiment will show that [Tf , T0] is a wide enough
temperature range for optimization and that [T P

f , TP
0 ] is a

proper subset of [Tf , T0] which will yield equally good results
in a smaller optimization time. L values are powers of 2 to test
a wide range of suitable parameters. All results were averaged
for statistical reliability. The optimization parameters of the
experiment are shown in Table I.

The SoC platform was a message passing system where
each PE had some local memory, but no shared memory. The
PEs were interconnected with a single dynamically arbitrated

TABLE I
OPTIMIZATION PARAMETERS FOR THE EXPERIMENT

Parameter Value Meaning
L 1, 2, 4, . . . , 4096 Iterations per temperature level
T0 1 Initial temperature
Tf 10−4 Final temperature
M 2 - 8 Number of processors
N 50, 300 Number of tasks
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Fig. 3. Averaged speedups for 300 node graphs with M=2-8 processing
elements and different L values (L = 1, 2, . . . , 4096) for each processing
element set.

shared bus that limits the SoC performance because of bus
contention. The optimization software was written in C lan-
guage and executed on a 10 machine Gentoo Linux cluster
each machine having a 2.8 GHz Intel Pentium 4 processor
and 1 GiB of memory. A total of 2.03G mappings were tried
in 909 computation hours leading to average 620mappings

s .

B. Experimental Results

Figure 3 shows averaged speedups for 300-node task graphs
with respect to number of iterations per temperature level and
number of PEs. Speedup is defined as t1

tM
, where ti is the

graph execution time on i PEs. The bars show that selecting
L = N(M − 1), where N = 300 is the number of tasks and
M ∈ [2, 8] gives sufficient iterations per temperature level to
achieve near best speedup (over 90% in this experiment) when
the reference speedup is L = 4096. The Figure also shows
that higher number of PEs requires higher L value which is
logically consistent with the fact that higher number of PEs
means to a bigger optimization space.

Figure 4 shows average speedup with respect to temperature.
Average execution time proportion for a single task in a 300
node graph is 1

300 = 0.0033. With our normalized acceptance
probability function this also means the interesting temperature
value for annealing, T = 0.0033, falls safely within the
predicted temperature range [T P

f , TP
0 ] = [0.0004, 0.0074]

computed with k = 1 from 300 node graphs. The Figure
shows that optimization progress is fastest at that range. The
full range [Tf , T0] was annealed to show convergence outside
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the predicted range. The method also applies well for the
50 node graphs, as shown in Figure 5, where the interesting
temperature point is at T = 1

50 = 0.02. The predicted range
computed for 50 node graphs with k = 1 is [0.0023, 0.033]
and the Figure shows that steepest optimization progress falls
within that range.

Annealing the temperature range [10−2, 1] with 300 nodes
in Figure 4 is avoided by using the parameter selection method.
That range is essentially Monte Carlo optimization which
converges very slowly and is therefore unnecessary. The tem-
perature scale is exponential and therefore that range consists
of half the total temperature levels in the range [Tf , T0]. This
means approximately 50% of optimization time can be saved
by using the parameter selection method. The main benefit of
this method is determining an efficient annealing schedule.

The average speedups with respect to number of mapping
evaluations with different L values is shown in Figure 6.
Optimization time is a linear function of evaluated mappings.
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Fig. 6. Averaged speedup with respect to mapping evaluations for 300 node
graphs with different L values.

This Figure also strenghtens the hypothesis that L = N(M −
1) = 300, . . . , 2100 is sufficient number of iterations per
temperature level.

V. CONCLUSION

The new parameter selection method was able to predict
an efficient annealing schedule for simulated annealing to
both maximize application execution performance and also
minimize optimization time. Near maximum performance was
achieved by selecting the temperature range and setting the
number of iterations per temperature level automatically based
on application and platform size. The number of temperature
levels was halved by the method. Thus the method increased
accuracy of architecture exploration and accelerated it.

Further research is needed to investigate simulated anneal-
ing heuristics that explore new states in the mapping space. A
good choice of mapping heuristics can improve solutions and
accelerate convergence, and it is easily applied into the existing
system. Further research should also investigate how this
method applies to optimizing memory, power consumption,
and other factors in a SoC.
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Abstract

Mapping of applications on a Multi-processor System-on-Chip (MP-SoC) is a crucial step to optimize performance,
energy and memory constraints at the same time. The problem is formulated as finding solutions to a cost function of
the algorithm performing mapping and scheduling under strict constraints. Our solution is based on simultaneous optimi-
zation of execution time and memory consumption whereas traditional methods only concentrate on execution time.
Applications are modeled as static acyclic task graphs that are mapped on MP-SoC with customized simulated annealing.
The automated mapping in this paper is especially purposed for MP-SoC architecture exploration, which typically requires
a large number of trials without human interaction. For this reason, a new parameter selection scheme for simulated
annealing is proposed that sets task mapping specific optimization parameters automatically. The scheme bounds optimi-
zation iterations to a reasonable limit and defines an annealing schedule that scales up with application and architecture
complexity. The presented parameter selection scheme compared to extensive optimization achieves 90% goodness in
results with only 5% optimization time, which helps large-scale architecture exploration where optimization time is impor-
tant. The optimization procedure is analyzed with simulated annealing, group migration and random mapping algorithms
using test graphs from the Standard Task Graph Set. Simulated annealing is found better than other algorithms in terms of
both optimization time and the result. Simultaneous time and memory optimization method with simulated annealing is
shown to speed up execution by 63% without memory buffer size increase. As a comparison, optimizing only execution
time yields 112% speedup, but also increases memory buffers by 49%.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Simulated annealing; Task graph; Memory optimization; Mapping; Multi-processor

1. Introduction

The problem being solved is increasing perfor-
mance and decreasing energy consumption of

Multi-processor System-on-Chip (MP-SoC). To
achieve both goals, the overall computation should
be distributed for parallel execution. However, the
penalty of distribution is often an increased over-
all memory consumption, since multi-processing
requires at least local processor caches or data
buffers for maintaining efficient computing. Each
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Processing Element (PE) is responsible for perform-
ing computations for a subset of application tasks.
Smallest memory buffers are achieved by running
every task on the same PE, but it would not be dis-
tributed in that case. Therefore, a trade-off between
execution time and memory buffers is needed.
On-chip memory is expensive in terms of area and
energy, and thus memory is a new, important opti-
mization target.

Application distribution is a problem of mapping
tasks on separate processing elements (PEs) for par-
allel computation. Several proposals have been
introduced over the years; the first ones being for
the traditional supercomputing domain. An optimal
solution has been proven to be an NP problem [1],
and therefore a practical polynomial time heuristics
is needed. In extreme cases heuristics are either too
greedy to explore non-obvious solutions or not
greedy enough to discover obvious solutions. Most
of the past distribution algorithms are not used to
optimize memory consumption.

In a traditional super-computing domain, opti-
mizing performance means also increasing network
usage, which will at some point saturate the network
capacity and the application performance. For MP-
SoC, the interconnect congestion must be modeled
carefully [2,3] so that the optimization method
becomes aware of network capacity and perfor-
mance, and is able to allocate network resources
properly for all the distributed tasks.

Simulated annealing (SA) [4,5] is a widely used
meta-algorithm to solve the application distribution
problem. However, it does not provide a definite
answer for the problem. Simulated annealing
depends on many parameters, such as move heuris-
tics, acceptance probabilities for bad moves, anneal-
ing schedule and terminal conditions. Selection of
these parameters is often ignored in experimental
papers. Specializations of the algorithm have been
proposed for application distribution, but many
crucial parameters have been left unexplained and
undefined. An automated architecture exploration
tool using SA requires a parameter selection method
to avoid manual tuning for each architecture and
application trial. Automated SA parameter selec-
tion has not been previously addressed in the con-
text of architecture exploration.

This paper presents three new contributions. The
first is a new optimization method with a cost func-
tion containing memory consumption and execution
time. It selects the annealing schedule, terminal con-
ditions and acceptance probabilities to make simu-

lated annealing efficient for the applied case.
Second is an automatic parameter selection method
for SA that scales up with application and system
complexity. Third contribution is empirical compar-
ison between three mapping algorithms, which are
SA, modified group migration (Kernighan–Lin
graph partitioning) algorithm and random map-
ping. SA without automatic parameter setting is
also compared.

The outline of the paper is as follows. Section 2
presents the terminology. Section 3 analyzes prob-
lems and benefits of other systems, and compares
them to our method. Section 4 explains our optimi-
zation framework where the method is applied.
Section 5 presents our optimization method for
automatic parameter selection and memory optimi-
zation. Section 6 presents the scheduling system that
is used for the optimization method. The experi-
ment that is used to validate and compare our
method to other algorithms is presented in Section
7 and the results are presented in Section 8. Section
9 justifies the parameter selection method. And
finally, Section 10 concludes the paper.

2. Terminology

Allocation, mapping and scheduling are phases
in realizing application distribution on MP-SoC.
Allocation determines how many and what kind
of PEs and other resources there are. Mapping
determines how the tasks are assigned to the allo-
cated PEs. Task scheduling determines the execu-
tion order and timing of tasks on each PE, and
communication scheduling determines the order
and timing of transfers on each interconnect. The
result of this process is a schedule, which determines
execution time and memory consumption.

For mapping optimization, the application is
modeled in this paper with static task graphs
(STG). STG is a directed acyclic graph (DAG),
where each node represents a finite deterministic
time computation task. Simulating an application
modeled as STG means traveling a directed acyclic
graph from ancestors to all children uncondition-
ally. Nodes of the graph are tasks, and edges present
communication and data dependence among tasks.

Fig. 1 shows an example of an STG. Weights of
nodes, marked as values inside parenthesis, indicate
computation costs in terms of execution time. In the
example, node E has computational cost of 5. Each
edge of the graph indicates a data dependency, for
example B is data dependent on A. Weights of
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edges, marked as numbers attached to edges in the
figure, indicate communication costs associated
with the edges. The edge from C to F costs four
units, which are data sizes for communication.
The communication time will be determined by
the interconnect bandwidth, its availability and data
size. STGs are called static because connectivity of
the graph, node weights and edge weights are fixed
before run-time. Communication costs change
between runs due to allocation and mapping thus
affecting edge weights.

A relevant factor regarding achievable parallel-
ism is the communication to computation ratio
(CCR). It is defined as the average task graph edge
weight divided by the average node weight (when
converted to comparable units). By the definition,
CCR over 1.0 means that computation resources
cannot be fully utilized because there is more
communication than computation to do.

There is no conditional task execution in STG,
but having conditional or probabilistic children (in
selecting path in the graph) or run-time determined
node weights would not change mapping algorithms
discussed in this paper. However, a more complex
application model, such as a probabilistic model,
would make the scheduling problem harder and
comparison of mapping algorithms a very large
study.

Despite these limitations, STGs could be used to
model, for example, a real-time MPEG4 encoder
because real-time systems have bounded execution
and communication costs for the worst case behav-
ior. Many multimedia applications belong to real-
time category and therefore applicability of STGs
is wide. STGs are also widely used in related work,
which helps comparisons.

Memory consumption of the application is par-
tially determined by the STG. It is fully determined
after the mapping and scheduling have been done. A
node, or its associated PE in practice, must preserve
its output data until it has been fully sent to all its
children. Also, a set of nodes on the same PE must
preserve input data until computation on all nodes
that require the data are finished. Results or input
data that are stored for a long period of time will
increase memory buffer usage significantly. An
alternative solution for this problem can possibly
be found by task duplication or resending results.
However, task duplication increases PE usage and
resending results increases interconnect congestion,
for which reason we do not consider these tech-
niques in this paper. Results are sent only once
and they are preserved on the target PE as long as
they are needed. The results are discarded immedi-
ately when they are not needed. Thus memory con-
sumption depends heavily on the mapping and
scheduling of the application.

3. Related work

Many existing optimization methods use stochas-
tic algorithms such as SA [4,5] and genetic algo-
rithms [6,7]. These algorithms have been applied
on wide variety of hard optimization problems,
but there is no consensus or common rules how to
apply them on MP-SoC optimization. SA can be
used with any cost function, but it is a meta-algo-
rithm because parts of it have to be specialized
for any given problem. The relevant mathematical
properties for this paper are discussed in [19]. SA
has been applied to many challenging problems,
including traveling salesman problem [4], and map-
ping and scheduling of task graphs [8].

Wild et al. [2] compared SA, Tabu Search [9] and
various algorithms for task distribution to achieve
speedup. Their results showed 7.3% advantage for
Tabu Search against SA, but they also stated they
were not able to control the progress of SA. Their
paper left many SA parameters undefined, such as
initial temperature, final temperature, maximum
rejections and acceptance function, which raises
questions about accuracy of the comparison with
respect to SA. Their method uses SA with geometric
temperature schedule that decreases temperature
proportionally between each iteration until a final
temperature is reached and then optimization is ter-
minated. As a consequence the number of iterations
is fixed for a given initial temperature, and thus, the

A (1)
B (2)1

E (5)

1

F (6)

2

C (3)

4
D (4)

1
1

Fig. 1. Example of a static task graph. Values in parenthesis
inside the nodes represent execution time, and values at edges
represent communication sizes. The communication time will be
determined by the interconnect, its availability and data size.
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method does not scale up with application and sys-
tem complexity.

Our method increases the number of iterations
automatically when application and system com-
plexity grows, which is more practical and less
error-prone than setting parameters manually for
many different scales of problems. The common fea-
ture for our and Wild et al. is the use of dynamically
arbitrated shared bus with multiple PEs, as well as
first mapping task graphs and then scheduling with
a B-level scheduler. Their system is different in hav-
ing HW accelerators in addition to PEs, and they
did not present details about HW accelerator per-
formance or CCR values of the graphs they used.
Our paper focuses on CCR values in the range
[0.5, 1.0], because computation resources are not
wasted too much in that range, and it is also possi-
ble to achieve maximum parallelism in some cases.

Braun et al. [10] compared 11 different optimiza-
tion algorithms for application distribution. They
also compared Tabu Search and SA, and in their
results, comparing to results from Wild et al., SA
was better than Tabu Search in three out of six
cases. Genetic algorithms gave the best results in
their experiment. Their SA method had a benefit
of scaling up with application complexity in terms
of selecting initial temperature with a specific
method. Our approach has the same benefit imple-
mented with a normalization factor integrated into
to acceptance probabilities.

The number of iterations in Braun’s method does
not scale up correctly because it is not affected by
the number of tasks in application. As a bad side
effect of their initial temperature selection method,
the number of iterations for SA is affected by the
absolute time rather than relative time of applica-
tion tasks. This is avoided in our method by using
a normalized temperature scale, which is made pos-
sible by the normalization factor in our acceptance
probability function. Braun’s annealing schedule
was a geometric temperature with 10% temperature
reduction on each iteration, implying that the tem-
perature decreases fast. This has the consequence
that one thousandth of initial temperature is
reached in just 87 iterations, after which the optimi-
zation is very greedy. Thus, the radical exploration
phase in SA, which means high temperatures, is
not dependent on application complexity, and
therefore the exploration phase may be too short
for complex applications. Their method also lacks
application adaptability because the maximum
rejections has a fixed value of 150 iterations regard-

less of the application complexity. They used
random node (RN) heuristics for randomizing new
mappings, which is inefficient with small amount
of PEs as described in Section 5.2.

Spinellis [11] showed an interesting SA approach
for optimizing production line configurations in
industrial manufacturing. Obviously the two fields
are very different in practice, but theoretical prob-
lems and solutions are roughly the same. As a spe-
cial case, both fields examine the task distribution
problem to gain efficiency. Spinellis showed an
automatic method for SA to select the number of
iterations required for a given problem. Their
method scaled up the number of iterations for each
temperature level based on the problem size. A
similar method is used in our method for task distri-
bution. Unfortunately acceptance probabilities,
meaning the dynamic temperature range, were not
normalized to different problems.

Our paper presents a specialization of the SA
meta-algorithm that addresses SA specific problems
in previously mentioned papers. Initial temperature,
final temperature and acceptance probabilities are
normalized to standard levels by an automatic
method that scales up both with application and
allocation complexity. Furthermore, the total opti-
mization effort is bounded by a polynomial function
that depends on application and allocation
complexity.

Group Migration (GM), also known as Kerni-
ghan–Lin algorithm, is a very successful algorithm
for graph partitioning [12]. It has been compared
to SA in [22] and suggested to be used for task map-
ping in [14]. Mapping is done by partitioning the
task graph into several groups of tasks, each group
being one PE. The algorithm was originally
designed to partition graphs into two groups, but
our paper uses a slightly modified version of the
algorithm for arbitrary number of groups while pre-
serving the old behavior for two groups. The idea to
modify the algorithm is presented in [14] and an
example is presented in [15].

Sinnen and Sousa [3] presented an application
model that embeds the interconnect structure and
contention into the optimization process. They pre-
sented a method to schedule communication onto a
heterogeneous system. Wild et al. [2] showed a sim-
ilar scheduling method to insert communications
onto a network to optimize communications. Task
graphs in their paper had 0.1, 1.0 and 10.0 as CCRs.
They concluded that CCR of 10.0 was too challeng-
ing to be distributed and that effect of communica-
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tion congestion model is quite visible already in the
CCR value of 1.0. These findings support our simi-
lar experience. Our method also schedules commu-
nications based on priorities of tasks that will
receive communication messages.

Also, Sinnen and Sousa [16] modeled side-effects
of heavy communication in SoCs by adding com-
munication overhead for PEs. Most parallel system
models are unaware of PE load caused by commu-
nication itself. For example TCP/IP systems need
to copy data buffers from kernel to application
memory. Sinnen and Sousas model is insufficient,
however, because it does not model behavior of
interrupt-driven and DMA-driven communication,
which are the most common mechanisms for high
performance computing. Communication overhead
should be extended over execution of multiple pro-
cesses in a normal case of interrupt driven com-
munication. In order to avoid bias of specific
applications, our model does not have processor
overhead for communication. Our model assesses
potential of various mapping algorithms rather than
effects of communication model.

Other approaches for the performance, memory
and power optimization include task graph parti-
tioning to automatically select system architecture
for a given application. Hou et al. [25] presented a
method for partitioning task graph onto a suitable
architecture. The system presented in this paper
does not partition task graphs, but the method in
[25] is directly applicable to our optimization system
as well.

Szymanek et al. [17] presented an algorithm to
simultaneously speedup executing and optimize
memory consumption of SoC applications. Their
method keeps track of data and program memory
requirements for different PEs to achieve the goal.
It is based on constraint programming that sets
hard limits on memory and time requirements,
whereas our method only places relative cost on
memory and time but allows all solutions.

Panda et al. [24] optimized the memory architec-
ture to fit a given application. This paper’s approach
penalizes using memory on the application level
while optimizing for performance. Methods dis-
cussed in [24] could be applied to the system pre-
sented in this paper as well. Their method operates
on the system level and ours on the application
level.

Kwok et al. did a benchmark on various schedul-
ing algorithms [13] and they explained methods and
theory of the same algorithms in [18]. We chose B-

level scheduling policy for our method, because it
was a common element in well performing schedul-
ing algorithms. The MPC algorithm was the best
scheduling policy in their benchmark on the
bounded number of processors case, and it is based
on the B-level scheduling.

Ascia et al. [23] used genetic algorithms to map
applications onto a SoC obtaining a pareto-front
of solutions for multiple cost functions. Their system
allows the designer to choose the best solution from
multiple controversial design goals. Their goal is,
however, different than ours, because our system
needs to pick a single good solution as part of an
automated CAD system [26]. Other than that,
multi-objective optimization and genetic algorithms
would fit well into the system presented in this paper.

4. MP-SoC application distribution framework

Our MP-SoC application distribution framework
is shown in Fig. 2. The optimization process starts
by selecting an allocation and an application, which
are target hardware and a task graph. Allocation
and the application are passed to a mapping algo-
rithm. The mapping algorithm is chosen between
group migration, random mapping or SA. The algo-
rithm starts with an initial solution in which all task
graph nodes are mapped to a single PE and then
iterates through various mapping candidates to find
a better solution. The mapping candidates are

Allocation

Mapping

Scheduling

Cost evaluation

Results

Application

Platform library

Allocation
candidate

Mapping
candidate

Scheduling
candidate

Application distribution Contents of this paper

• HIBI MP-SoC network
• Generic PE models

• Static task graphs from the Standard Task Graph 
Set

• 1-4 PEs
• Fixed width shared bus

• Simulated annealing
• Group Migration
• Random

• B-level scheduler

• Application execution time
• Application memory consumption
• Optimization time
• Number of iterations

• Time-Memory objective function

Fig. 2. MP-SoC application distribution framework.
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scheduled with a B-level scheduler to determine the
execution time and memory usage. The B-level
scheduler decides the execution order for each task
on each PE to optimize execution time. The good-
ness of the candidate is evaluated by a cost function
that depends on the execution time and memory
consumption. At some point mapping algorithm
stops and returns the final mapping solution.

In many optimization systems mapping and
scheduling are dependent on each other [18], but
in this system allocation, mapping and scheduling
algorithms can be changed independently of each
other to speedup prototyping of new optimization
algorithms. The current system allows optimization
of any task-based system where tasks are mapped
onto PEs of a SoC consisting of arbitrary intercon-
nection networks. Therefore, dynamic graphs and
complex application models can be optimized as
well. Communication delays and the interconnec-
tion network can vary significantly and thus sched-
uling is separated from mapping. Communication
delays for both shared and distributed memory
architectures can be modeled as well.

The system uses a single cost function, but
multi-objective systems analyzing pareto-fronts of
multiple solutions [23] could implemented without
affecting the optimization algorithms presented
here.

5. Mapping algorithms

5.1. Simulated annealing algorithm

The pseudo-code of the SA algorithm is pre-
sented in Fig. 3, and explanations of symbols are
given in Table 1. SA cannot be used for task map-
ping without specializing it. The following parame-
ters need to be chosen for a complete algorithm:
annealing schedule, move heuristics, cost function,
acceptance probability and the terminal condition.

The Cost function in Fig. 3 evaluates the cost for
any given state of the optimization space. Each
point in the optimization space defines a mapping
for the application. The optimization loop is termi-
nated after Rmax amount of consecutive moves that
do not result into improvement in cost. The Temper-

ature-Cooling function on Line 7 determines the
annealing rate of the method which gets two param-
eters: T0 is the initial temperature, and i is the iter-
ation number. The Move function on Line 8 is a
move heuristics to alter current mapping. It depends
on the current state S and temperature T. The Ran-

dom function returns a random number from the
uniform probability distribution in range [0, 1).
The Prob function determines the probability for
accepting a move to a worse state. It depends on
the current temperature and the increase of cost
between old and new state.

Fig. 3. Simulated annealing algorithm.

Table 1
Summary of symbols of the simulated annealing pseudo-code

C Cost function value
Cbest Best cost function value
Cost() Cost function
i Iteration number
Move() Move heuristics function
p Probability value
Prob() Probability function of accepting a bad

move
r Random value
Random() Random variable function returning value in

range [0, 1)
R Number of consecutive move rejections
Rmax Maximum number of rejections
S Optimization state (mapping)
S0 Initial state
Sbest Best state
T Current temperature in range (0, 1]
T0 Initial temperature (1.0 in this method)
Tf Final temperature
Temperature-

Cooling()
Annealing schedule function
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5.2. Automatic parameter selection for SA

The choice of annealing schedule (Temperature-

Cooling function) is an important factor for optimi-
zation [19]. Mathematical theory establishes that
infinite number of iterations is needed to find a glo-
bal optimum with SA. However, the mapping prob-
lem is finite but it is also an NP problem implying
that a practical compromise has to be made that
runs in polynomial time. Annealing schedule must
be related to the terminal condition. We define the

dynamic temperature scale to be r ¼ log T 0

T f

� �
and

assert that a terminal condition must not be true
before a large scale of temperatures has been tried,
because only a large scale r allows careful explora-
tion of the search space. High temperatures will
do rapid and aggressive exploration, and low tem-
peratures will do efficient and greedy exploration.
A common choice for the annealing schedule is a
function that starts from an initial temperature,
and the temperature decreases proportionally
between each level until the final temperature is
reached. The proportion value p is close to but smal-
ler than 1. Thus the number of temperature levels is
proportional to r. We will use this schedule.

The terminal condition of annealing must limit
the computational complexity of the algorithm so
that it is reasonable even with larger applications.
The maximum number of iterations should grow
as a polynomial number of problem factors rather
than as an exponential number that is required for
true optimum solution. The relevant factors for
the number of iterations are initial temperature T0,
final temperature Tf, the number of tasks to be
mapped N and the number of PEs M.

Further requirement for task mapping is that
annealing schedule must scale with application and
allocation complexity with respect to optimization
ability. This means that the amount of iterations
per temperature level must increase as the appli-
cation and allocation size grows. For N tasks and
M PEs one must choose a single move from
N(M � 1) different alternatives, and thus it is logical
that the amount of iterations per temperature level
is at least proportional to this value. Considering
these issues we define the system complexity as

L ¼ NðM � 1Þ ð1Þ
Thus the complexity measure is a product of appli-
cation and allocation complexity. Furthermore we
require that the number of iterations for each tem-
perature level is L, because that is the number of

choices for changing a single mapping on any given
state. Also, we select the number of temperature
levels according to dynamic temperature scale r.

It must be noted that SA will very unlikely try
each alternative mapping for a temperature level
even if the number of iterations is L because the
heuristics move is a random function. Also, if a
move is accepted then the mapping alternatives after
that are based on the new state and therefore trying
L different alternatives will not happen. In the case
of frequent rejections due to bad states or low
temperature, the L amount of moves gives similar
behavior as the group migration algorithm, but
not exactly the same because SA makes chains of
moves instead of just trying different move alter-
natives. Also, SA does not share the limitations of
group migration because it is not greedy until low
temperature levels are reached.

The chosen terminal condition is true when the
final temperature is reached and a specific amount
of consecutive rejections happen. The maximum
amount of consecutive rejections Rmax should also
scale with system complexity, and therefore it is
chosen so that Rmax = L.

Based on these choices we get a formula to com-
pute the total number of iterations for SA. The
number of different temperature levels x in Eq. (2)
depends on the proportion p and the initial and final
temperatures as

T 0px ¼ T f ) x ¼
log T f

T 0

log p
: ð2Þ

The total number of iterations Itotal is computed in
Eq. (3) based on the number of different tempera-
ture levels x and the number of tasks and PEs of
the system as

I total ¼ xLþ Rmax ¼ xLþ L ¼ ðxþ 1ÞL

¼
log T f

T 0

log p
þ 1

 !
NðM � 1Þ ð3Þ

Therefore, the total number of iterations is a func-
tion of N tasks, M PEs and the temperature scale r.

Eq. (4) shows the annealing schedule function
decreasing temperature geometrically every L itera-
tions as

Temperature-CoolingðT 0; iÞ ¼ T 0p
i
Lb c: ð4Þ

A common choice for acceptance probability is
shown in Eq. (5) as
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Basic-ProbabilityðDC; T Þ ¼ 1

1þ exp DC
T

: ð5Þ

DC is the increase in cost function value between
two states. A bigger cost increase leads to lower
probability, and thus moving to a much worse state
is less probable than moving to a marginally worse
state. The problem with this function is that it gives
a different probability scale depending on the scale
of the cost function values of a specific system.
The system includes the platform and applications,
and it would be a benefit to automatically tune the
acceptance probability to the scale of the cost
function.

We propose a solution to normalize the probabil-
ity scale by adding a new term to the expression
shown in Eq. (6). C0 is the initial cost function value
of the optimization process. The term DC

C0
makes the

state change probability relative to the initial cost
C0. This makes annealing comparable between dif-
ferent applications and cost functions. An addi-
tional assumption is that temperature T is in range
(0, 1].

Normalized-ProbabilityðDC; T Þ ¼ 1

1þ exp DC
0:5C0T

ð6Þ
Fig. 4 presents acceptance probabilities for the nor-
malized probability function for relative cost func-
tion changes and temperatures. The probabilities
lie in the range (0, 0.5]. As the relative cost change
goes to zero, the probability goes to 0.5. Thus the
function has a property of easily allowing SA to
take many small steps that have only a minor wors-

ening effect on the cost function. When the temper-
ature decreases to near zero, these small worsening
steps become very unlikely.

A common choice for move heuristics [2,6,10] is a
function that chooses one random task and maps
that to a random PE. It is here named as the RN
(Random Node) move heuristics and presented in
Fig. 5. It has the problem that it may do unneces-
sary work by randomizing exactly the same PE
again for a task. In 2 PE allocation case probability
for that is 50%. Despite this drawback, it is a very
common choice as a move heuristics.

The obvious deficiency in the RN heuristics is
fixed by our RM move (Random Modifying move)
heuristics presented in Fig. 6. It avoids choosing the
same PE and, thus, has a clear advantage over the
RN heuristics when only a few PEs are used. This
small detail has often been left unreported on other
publications, but it is worth pointing out here.

Fig. 7 shows an example of annealing process for
optimizing execution time of a 50 node STG on 2
PEs. The effect of annealing from high temperature
to a low temperature can be seen as the cost func-
tion altering less towards the end. At the end the
optimization is almost purely greedy, and hence
allows moves to a worse state with a very low prob-
ability. This figure shows the cost function value of
the current accepted state rather than cost function
values of all tried states. A figure showing cost func-
tion values of all tried states would be similar to a
white noise function.

5.3. Group migration algorithm

Group migration is used to map task graphs onto
multiple PEs in a greedy fashion. This is a general-
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.

Fig. 5. RN move heuristics moves one random task to a random
PE.

Fig. 6. RM move heuristics moves one random to a different
random PE.
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ization of the original algorithm [12] that parti-
tioned graphs to two disjoint subsets. Our modified
version partitions the graph into arbitrarily many
disjoint subsets.

The algorithm is greedy because it only accepts
moves to better positions, and thus it always gets
stuck into a local minimum in the optimization
space. The algorithm consists of migration rounds.
Each round either improves the solution or keeps
the original solution. Optimization ends when the
latest round is unable to improve the solution. Usu-
ally the algorithm converges into a local minimum
in less than five rounds [12].

A move in GM means moving one specific task
to another PE. A round consists of sub-rounds
which try all tasks on all other PEs. With N nodes
and M PEs it is (M � 1)N tries. The best move on
the sub-round is chosen for the next sub-round.
Tasks, which have been moved as best task candi-
dates on previous sub-rounds, are not moved
anymore until the next round comes. There are
at most N sub-rounds. This results into at most
(M � 1)N2 moves per round. If no improving move
is found on a sub-round, the round is terminated,
because all possible single moves were already tried
((M � 1)N tries). The pseudo-code of the modified
group migration algorithm is shown in Fig. 8 and

variables that are new compared to SA are
explained in Table 2.

The main loop of the pseudo-code begins on Line
1 of Group-Migration function. It calls GM-Round

function as long as it can improve the mapping.
GM-Round will change at most one mapping per
round. If it does not change any, the optimization
will terminate. GM-Round first computes the initial
cost of initial state S0 on Line 2. The Cost function
is the same function as with SA. Line 3 initializes
an array that marks all tasks as non-moved. The
function can only move each task once from one
PE to another, and this table keeps record of tasks
that have been moved. Moved tasks can not be
moved again until the next call to this function.
The upper limit of loop variable i on Line 4 signifies
that each task can only be moved once. Increasing
the upper limit would not break or change the func-
tional behavior. Line 7 begins a sub-round which
ends at Line 20. The sub-round tries to move each
task from one PE to every other PE. The algorithm
accepts a move on Line 15, if it is better than any
other previous move. The effect of any previous
moves is discarded on Line 19, even if a move
improved mapping. However, the best improving
move is recorded for later use on Lines 17–18. Each
move is a separate try that ignores other moves. If no
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Fig. 7. An example of annealing from a high to a low temperature state for a 50 node STG with 2 PEs. · marks the mapping iteration that
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improving move was found in the loop beginning on
Line 7, the search is terminated for this round on
Line 21. Otherwise, the best move is applied on Lines
23–24. The best found is returned on Line 25.

5.4. Random mapping algorithm

Random mapping is an algorithm that selects a
random PE separately for all tasks on every invoca-

tion of the algorithm. The algorithm is a useful
baseline comparison algorithm [14] against other
algorithms since it is a policy neutral mapping algo-
rithm that converges like Monte Carlo algorithms.
The random mapping exposes the inherent parallel-
izability of any given application for a given number
of iterations. It should be compared with other algo-
rithms by giving the same number of iterations
for both algorithms. Random mapping results are
presented here to allow fair comparison of the SA
and GM methods against any other mapping
algorithms. Cost function ratio of SA and random
mapping can be compared to the ratio of any other
algorithm and random mapping.

6. Scheduling and cost functions

6.1. B-level scheduler

The scheduler decides the execution order of
tasks on each PE. If a task has not been executed
yet, and it has all the data required for its execution,
it is said to be ready. When several tasks are ready
on a PE the scheduler selects the most important
task to be executed first.

Tasks are abstracted as nodes in task graphs, and
communication is abstracted as edges. Node and
edge weights, which are cycle times and data sizes,
respectively, are converted into time units before
scheduling. The conversion is possible because allo-
cation and mapping are already known.

The scheduler applies B-level scheduling policy
for ordering tasks on PEs. The priority of a node
is its B-level value [18]. Higher value means more
important. The B-level value of a node is the longest
path from that node to an exit node, including exit
nodes weight. Exit node is defined as a node that has
no children. The length of the path is defined as the
sum of node and edge weights along that path. For
example, in Fig. 1 the longest path from A to F is
1 + 1 + 5 + 1 + 6 = 14, and thus B-level value of
node A is 14.

As an additional optimization for decreasing
schedule length, the edges, which represent commu-
nication, are also scheduled on the communication
channels. A priority of an edge is the weight of
the edge added with B-level values of child nodes.
Thus, children who have higher priority may also
receive their input data more quickly.

Fig. 9 shows pseudo-code for computing B-level
priorities for an STG. Line 1 does a topological sort
on the task graph. The topological sort means

Fig. 8. A modified group migration algorithm for arbitrary
number of PEs.

Table 2
Summary of new variables used in the group migration algorithm

A PE
Aold Old PE
DPE PE associated with the best migration candidate
Dtask Task associated with the best migration candidate
Moved Array of Booleans indicating tasks that have been

moved
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ordering the task graph into a list where the node A
is before the node B if A is a descendant of B. Thus
the list is ordered so that children come first. Line 2
iterates through all the tasks in that order. Line 3
sets default B-level value for a node, which is only
useful if the node is an exit node. Array B contains
known B-level values so far. If a node is not an exit
node, the B-level is computed on Lines 4–9 to be the
maximum B-level value with respect to its children.
A B-level value with respect to a child is the sum of
child’s B-level value, edge weight towards the child,
and the node weight of the parent node.

It should be noted that although B-level value is
dependent on communication costs, it does not
model communication congestion. Despite this
limitation, Kwok et al. show in [13] that the best
bounded number of processor (BNP) class schedul-
ing algorithm is based on ALAP (as late as possible)
time. ALAP time of a node is defined as the differ-
ence of the critical path length and the B-level value
of the node. An unscheduled node with the highest
B-level value is by definition on the dynamic critical
path, and therefore B-level priority determines
ALAP time uniquely, and therefore B-level priority
is an excellent choice.

The algorithmic complexity of the B-level prior-
ity computation is O(E + V), where E is the number
of edges and V is the number of nodes. However,
the list scheduling algorithm complexity is
O((E + V)log V), which is higher than the complex-
ity of computing B-level priorities, and therefore the
complexity of the whole scheduling system is
O((E + V)log V).

6.2. Cost function

In this paper, the optimization process measures
two factors from a mapped system by scheduling the

task graph. Execution time T and memory buffer
size S are the properties which determine the cost
function value of a given allocation and mapping.

The scheduler system simulates the task graph
and architecture by executing each graph node par-
ent before the child node is executed as well as
delaying the execution of the child node until results
from the parent nodes have arrived, thus determin-
ing the execution time T by behavioral simulation.
The system is, however, not limited to behavioral
simulation, but exact models on the underlying
system could be used by changing the scheduler
part.

The scheduler keeps track of buffers that are
needed for the computation and communication
to determine memory buffer size S. When a PE
starts receiving a data block from another PE it
needs to allocate a memory buffer to contain that
data. The PE must preserve that data buffer as long
as it is receiving the data or computing something
based on that data. The receiving buffer is freed
after the computation. When a PE starts computing
it needs to allocate memory for the result. The result
is freed when the computation is done and the result
has been sent to other PEs.

As a result, when the full schedule of an STG has
been simulated, the scheduler knows memory size S
required for the whole architecture and the total
execution time T. The mapping algorithm is orthog-
onal to the scheduler part in our system, which was
the design goal of the optimization framework, and
thus other optimization parameters could be easily
added by just changing the scheduler part without
affecting the mapping algorithms.

The cost function is chosen to optimize both exe-
cution time and required memory buffers, that is,
minimize the cost function aT + bS, where a and b

are constants. When both time and memory are
optimized, parameters a and b are chosen so that
on a single PE case both aT and bS are 0.5 and thus
cost function has the value 1.0 in the beginning.

The motivation for including memory buffer size
factor into the cost function is to minimize expen-
sive on-chip buffer memory required for parallel
computation. An embedded system designer may
balance cost function factors to favor speedup or
memory saving depending on which is more impor-
tant for the given application. Adding more factors
into the cost function will motivate for research
on multi-objective optimization and can take
advantage of pareto-optimization methods such as
[23].

Fig. 9. Algorithm to compute B-level values for nodes of a task
graph.
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7. Experiments

7.1. Setup for the experiment

The optimization software is written for the
UNIX environment containing 3600 lines of C code.
On a 2.0 GHz AMD Athlon 64 computer, the soft-
ware is able to evaluate 12,000 mappings in a second
for a 50 node STG with 119 edges, or 600,000 nodes
or 1.43 million edges in a second. The software did
2094 mappings in a second for a 336 node STG with
1211 edges, or 703,584 nodes or 2.54 million edges
in a second. Thus the method scales well with the
number of nodes and edges. Scalability follows from
the computational complexity of the scheduling
method because a single mapping iteration without
scheduling is in O(1) complexity class.

The experiment is divided into two categories.
The first category is the execution time optimiza-
tion, where the cost function is the execution time
of the application. The second category is the execu-
tion time and memory buffer optimization, where
the cost function is a combination of execution time
and memory buffers. Both categories are tested with
SA, GM and random mapping algorithms. Each
algorithm is used with 1 to 4 PEs. The single PE case
is the reference case that is compared with other
allocations. For each allocation, 10 graphs with 50
nodes and 10 graphs with 100 nodes are tested.
The graphs were random STGs with random
weights. Each graph is optimized 10 times with

exactly the same parameters. Thus, the total amount
of optimizations is 2 (categories) * 3 (algorithms) *
3 (PE allocations) * 20 (STGs) * 10 (independent
identical runs) = 3600 runs. Fig. 10 depicts the
whole experiment as a tree. Only one branch on
each level is expanded in the figure, and all branches
are identical in size.

7.2. Simulated annealing parameters

SA parameters are presented in Table 3. Final
temperature is only 0.0001, and therefore SA is very
greedy at the end of optimization as shown by the
acceptance function plot in Fig. 4.

Table 4 shows the total number of mappings for
one SA descend based on the parameters shown in
Table 3.

7.3. Group migration and random mapping

parameters

Group migration algorithm does not need any
parameters. This makes it a good algorithm to com-
pare against other algorithms because it is also easy
to implement and suitable for automatic architec-
ture exploration. Relative advantage of the SA
method over GM can be compared to any other
algorithm over GM.

Experiment

Time Time + Memory

SA

1 PE 4 PEs

50 Node STG 100 Node STG

STG 1 STG 10

Run 1 Run 10

. . . .

. . . .

GMRANDOM

. . . .

Fig. 10. Outline of the experiment procedure.

Table 3
Parameters for simulated annealing

Temperature
proportion (p)

0.95

Initial temperature (T0) 1.0
Final temperature (Tf) 0.0001
Iterations per

temperature level
L = N(M � 1) (Eq. (1))

Move heuristics RM-move
Annealing schedule

(Temperature-
Cooling)

Temperature decreases
proportionally once in L iterations

Acceptance probability
(Prob)

Normalized probability (Eq. (6))

Terminal condition Final temperature is reached and at
least L consecutive rejections are
observed

Table 4
Total number of mappings for one simulated annealing descend

2 PEs 3 PEs 4 PEs

52 tasks 9300 18,700 28,000
102 tasks 18,300 36,600 54,900
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Random mapping tries N2M2 random mappings
independently, which is much more than with SA.
Random mapping is defined as choosing a random
PE separately for all tasks. Random mapping pre-
sents a neutral reference to all other algorithms both
in terms of behavior and efficiency. It does worse
than other algorithms, as experiment will show,
but it shows how much can be optimized without
any knowledge of system behavior.

7.4. Static task graphs

STGs used in this paper are from Standard Task
Graph Set [20]. The experiment uses 10 random
STGs with 50 nodes and 10 random STGs with
100 nodes. The task graph numbers from 50 node
graphs are: 2, 8, 18, 37, 43, 49, 97, 124, 131 and
146. The task graph numbers from 100 node graphs
are: 0, 12, 15, 23, 46, 75, 76, 106, 128 and 136. Edge
weights had to be added into the graphs because the
Standard Task Graph collection graphs do not have
them. In this case study, each edge presents commu-
nication of Normal(64, 162) bytes. That is, the edge
weights are normally distributed with mean of
64 bytes and standard deviation of 16 bytes. The
node weights were multiplied by a factor of 32 to
have communication to computation ratio (CCR)
at a reasonable level. The CCR is defined as the
average edge weight divided by the average node
weight. Summary of the properties is presented in
Table 5.

7.5. MP-SoC execution platform

The MP-SoC execution platform on which exper-
iments are run is assumed to have a number of iden-
tical PEs as shown in Fig. 11. Each PE is a 50 MHz
general purpose processor (GPP), and thus it can
execute any type of task from the TG and the map-
ping space does not have constraints. Task execu-
tion on a GPP is uninterruptible by the other
tasks. IO operations are carried out in the back-
ground and they are assumed to be interrupt-driven.

Task execution time is one or more GPP cycles. This
is converted into time units by dividing the cycle
number by the associated PE’s clock frequency
before scheduling.

The PEs are connected with a single dynamically
arbitrated shared bus, and all the PEs are equally
arbitrated on the bus. Transaction is defined as
transferring one or more data words from one PE
to another. Transactions are assumed to be atomic,
meaning that they cannot be interrupted. Arbitra-
tion policy for transactions is FIFO. Broadcast is
not used in the system, i.e. there is exactly one recei-
ver for each send. Bus data width is assumed to be
32 bits, and the bus can transfer its data width bits
every cycle. Initial transfer latency for a transaction
is modeled to be 8 bus cycles. This is the minimum
latency for each bus transaction. This latency is used
to prevent unrealistic bus utilization levels that do
not occur in the real world. The bus operates on
2.5M MHz clock (M is the amount of PEs). The
bus frequency is scaled with M because the amount
of required communication is proportional to M.
Not scaling with M would mean a significant bottle-
neck in the system. Summary of the system architec-
ture is shown in Table 6.

It must be noted here that interconnect and GPP
frequency are not relevant without the context of
task graph parameters. The hardware was fixed at
the specified level, and then task graph parameters
were tuned to show relevant characteristics of opti-
mization algorithms. With too fast hardware there
would not be much competition among algorithms
and distribution results would be overly positive.
With too slow a hardware nothing could be

Table 5
Summary of graph properties for the experiment

Graphs 10 times 50 node STGs, 10 times 100 node STGs,
from Standard Task Graph Set

Edge
weights

Normally distributed: Normal(64, 162)

Node
weights

32 times the Standard Task Graph Set values

Table 6
MP-SoC execution platform data

PEs 1–4
PE frequency 50 MHz
Bus type Dynamically arbitrated shared bus
Bus width 32 bits
Bus throughput Bus width bits per cycle
Bus arbitration latency 8 cycles
Bus frequency 2.5M MHz

Memory Memory Memory Memory

PE PE PE PE

Fig. 11. Block diagram of the MP-SoC execution platform.
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distributed while gaining performance and algo-
rithms would be seen as useless. Many experiments
were carried out to choose these specific parameters.

Edge loads are converted from communication
bytes into time units by

t ¼
Latþ 8Si

W

� �
f

; ð7Þ

where Lat is the arbitration latency of the bus in
cycles, W is the bus width in bits, Si is the transfer
size in bytes and f is the bus frequency.

CCR is computed by dividing the average edge
weight with the average node weight of the graph.
CCR values on 50 and 100 node graphs for 2, 3
and 4 PE cases are 0.98, 0.65 and 0.49, respectively.
As the rationale in related work section explains,
values near 1.0 are in the relevant range of parallel
computing. CCR values could be chosen arbitrarily,
but values lower than 0.1 would mean very well par-
allelizable problems, which are too easy cases to be
considered here. However, values much higher than
1.0 would mean applications that cannot be speeded
up substantially. It should be noted that the CCR
decreases with respect to the number of PEs in this
paper, because the interconnect frequency is pro-
portional to the number of PEs in the allocation
phase.

8. Results

Results of the experiment are presented as
speedup, gain and memory gain values. Speedup is

defined as the execution time for a single PE case
divided by the optimized execution time. Gain is
defined to be the cost function value for the single
PE case divided by the optimized cost function
value. Memory gain measures memory usage for
the single PE case divided by the optimized case.
A higher gain value is always better. The following
results compare two cases, which are the time opti-
mization case and the memory-time optimization
case. In the time optimization case, the cost function
depends only on the execution time of the distrib-
uted application, but in the memory-time optimi-
zation case, the cost function depends on both
execution time and memory buffer size. The com-
plexity of algorithms is similar so that the number
of iterations determines the runtime directly.

8.1. Time optimization comparison

Fig. 12 presents the speedup values for each algo-
rithm in the time optimization case with 2–4 PEs for
50 and 100 node graphs. The average speedups in
combined 50 and 100 node cases for SA, GM and
random mapping are 2.12, 2.03 and 1.59, respec-
tively. Thus, SA wins GM by 4.4%, averaged over
20 random graphs that are each optimized 10 times.
Also, SA finds the best speedup in 34% of iterations
compared to GM, as shown in Fig. 13. This means
that SA converges significantly faster than GM. SA
wins random mapping by 75%, and converges to the
best solution in 74% of iterations. Random mapping
is significantly worse than others.
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Fig. 12. Mean speedups on time optimization for 50 and 100 node graphs.
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8.2. Memory-time optimization comparison

Fig. 14 shows the gain values for the memory-
time optimization case with 2–4 PEs for 50 and
100 node task graphs. Average gains in combined
50 and 100 node cases for SA, GM and random
mapping are 1.234, 1.208 and 1.051, respectively.
Thus, SA wins GM by 2.2% and random by 17%.
SA reaches the best solution in 12% of iterations
compared to GM, which is significantly faster, as
shown in Fig. 15. The memory-gain units are small
as numeric values, and their meaning must be ana-

lyzed separately in terms of speedup and memory
usage.

Fig. 16 shows the memory gain values for the
memory-time optimization case, and Fig. 17 shows
the same values for the time optimization case.
Average memory gain values for the memory-time
optimization case for SA, GM and random map-
pings are 1.00, 1.02 and 0.94, respectively. These
numbers are significant, because computation paral-
lelism was achieved without using more data buffer
memory that needs to be expensive on-chip mem-
ory. Using external memory for data buffers would
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decrease throughput and increase latency, which
should be avoided.

The GM case is interesting because it shows that
computation actually uses 2% less memory for data
buffers than a single PE. This happens because it is
possible to off-load temporary results away from
originating PE and then free buffers for other
computation. Now comparing memory gain values
to the time optimization case, where the averages
memory gains are 0.67, 0.67 and 0.69, we can see
that time optimization case uses 49%, 52% and
36% more data buffers to achieve their results. To
validate that decreasing memory buffer sizes is use-

ful the speedup values have to be analyzed as well.
Fig. 18 shows speedup values for memory-time opti-
mization case. Average speedups for SA, GM and
random mapping are 1.63, 1.52 and 1.36, respec-
tively, which are 23%, 25% and 14% less than their
time optimization counterparts. Therefore, our
method can give a noticeable speedup without need
for additional on-chip memory buffers.

SoC design implications of memory-time optimi-
zation method can be analyzed by looking at abso-
lute requirements for on-chip memory buffers.
Consider a SoC video encoder performing motion
estimation on 2 PEs with 16 · 16 pixel image blocks
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with 8 bits for each pixel [21]. The video encoder
would have at least 10 image blocks stored on both
PEs leading to total memory usage of 5120 bytes
of memory, which also sets a realistic example for
SoC data buffers. To compare that to our random
graphs, 2312 bytes of memory buffers were used
on average for 50 node case with 1 PE. Parallelizing
that with the memory-time optimization method
did not increase required memory, but optimizing
purely for time increased memory buffer usage to
3451 bytes on average. Therefore, 1139 bytes or
33% of on-chip memory was saved with our
method, but approximately 23% of speed was lost

compared to pure time optimization. This means
that a realistic trade-off between fast execution time
and reasonable memory usage is possible by choos-
ing a proper cost function.

Random graphs used in this paper avoid bias
towards specific applications, and the 33% of saved
memory buffers are independent of the absolute size
of the application. Thus bigger applications would
save more memory in absolute terms. Similar results
were obtained by Szymanek et al. [17], who opti-
mized random graphs by a constraint based optimi-
zation method that penalized memory usage in a
cost function. They compared the constraint based
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method to a greedy algorithm that optimized only
execution time. The constraint method resulted into
18% less data memory but also 41% less speed
compared to the greedy algorithm. As a difference
to our method, Szymanek et al. also optimized code
memory size. Their method was able to decrease
code size by 33%. The code size does not apply to
random graphs from Standard Task Graph Set,
because they do not have functions defined for each
node, and therefore it has to be assumed that each
node is a separate function. Consequently, changing
the mappings does not affect total code size.

9. Parameter selection

To analyze the effect of Eq. (1) on speedup and
gain, we ran Section 7 experiment for 50 and 100
node graphs with different values of L 2 {1, 2,
4, . . . , 4096} (powers of 2). Each graph was opti-
mized 10 times independently to estimate the statis-
tical effect of the L parameter.

By theory, it is trivial that no fixed L value can
perform well for arbitrary sized graphs and architec-
tures because not even trivial mappings can be tried
in a fixed number of iterations. Therefore, L must be
a function of graph and architecture size. This was
the origin of the parameter selection scheme, and
the experimental evidence is given below.

Figs. 19 and 20 show the effect of L parameter for
memory and time optimization with 50 and 100
nodes, respectively. In the 100 node case the gain
value curve increases steeper than in the 50 node
case, as L increases from one to more iterations.

This shows clearly that more nodes requires more
iterations to reach equal gain. These figures also
show that increasing M, the number of PEs, makes
the climb steeper. This implies that more iterations
are needed as M increases. Moreover, these figures
show that selecting L = N(M � 1) is enough itera-
tions to climb the steepest hill. The behavior is
similar for the time optimization case as shown
in Fig. 21.

Table 7 shows that relative gain of 85% to 94% is
achieved in 2.4% to 7.3% iterations with the para-
meter selection scheme when compared to selecting
4096 iterations. Speedup and gain are almost satu-
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rated at 4096 iterations, and thus, it is the reference
for maximum obtainable gain and speedup. This
shows that the parameter selection scheme yields
fast optimization with relatively good results. From
the figures, it must be stressed that L must be at
least linear to graph and architecture size to reach
good gains.

The impact of our parameter selection scheme is
also evaluated in [27].

10. Conclusions

This paper presents an optimization method that
carries out memory buffer and execution time opti-
mization simultaneously. Results are compared with
three task mapping algorithms, which are simulated
annealing (SA), group migration and random
mapping. The mapping algorithms presented are
applicable to a wide range of task distribution prob-
lems, for both static and dynamic task graphs. The
SA algorithm is shown to be the best algorithm in
terms of optimized cost function value and
convergence rate. Simultaneous time and memory
optimization method with SA is shown to speed
up execution by 63% without memory buffer size
increase. As a comparison, optimizing the execution
time only speeds up the application by 112% but
also increases memory buffer sizes by 49%. There-
fore, a trade-off between our method and the pure
time optimization case is 33% of saved on-chip
memory but 23% loss in execution speed.

This paper also presents a unique method to
automatically select SA parameters based on the
problem complexity which consists of hardware
and application factors. Therefore, the error-prone
manual tuning of optimization parameters can be
avoided by using our method, and optimization

results can be improved by better fitting optimiza-
tion parameters to the complex problem. It is exper-
imentally shown that the number of iterations for
SA must be at least linear to the number of applica-
tion graph nodes and the number of PEs to reach
good results.

Future work should study the task distribution
problem of minimizing iterations to reach near opti-
mum results with SA, instead of just focusing on the
final cost function value. Also, the next logical step
is to evaluate the method on dynamic task graphs.
In addition, more mapping algorithms, such as
genetic algorithms and Tabu Search, should be
tested with our memory optimization method, and
automatic selection of free parameters should be
devised for those algorithms as well. Also, adding
more factors into the cost function motivates
research on multi-objective optimization to fulfill
additional design restrictions of the system.
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Abstract— Mapping an application on Multiprocessor System-
on-Chip (MPSoC) is a crucial step in architecture exploration.
The problem is to minimize optimization effort and application
execution time. Applications are modeled as static acyclic task
graphs which are mapped to an MPSoC. The analysis is based on
extensive simulations with300 node graphs from the Standard
Graph Set.

We present a new algorithm, Optimal Subset Mapping (OSM),
that rapidly evaluates task distribution mapping space, and then
compare it to simulated annealing (SA) and group migration
(GM) algorithms. OSM was developed to make architecture
exploration faster. Efficiency of OSM is 5.0× and 2.4× than
that of GM and SA, respectively, when efficiency is measured
as the application speedup divided by the number of iterations
needed for optimization. This saves81% and 62% in wall
clock optimization time, respectively. However, this is a trade-
off because OSM reaches96% and 89% application speedup
compared to GM and SA. Results show that OSM and GM have
opposite convergence behavior and SA comes between these two.

I. I NTRODUCTION

An efficient MPSoC implementation requires exploration to
find an optimized architecture as well as mapping and schedul-
ing of the application. A large design space must be pruned
systematically, since the exploration of the whole design space
is not feasible. However, fast optimization procedure is desired
in order to cover reasonable design space. Iterative algorithms
evaluate a number of application mappings for each resource
allocation candidate. For each mapping, an application sched-
ule is determined to evaluate the cost. The cost function
may consider multiple parameters, such as execution time,
communication time, memory, energy consumption and silicon
area constraints.

SoC applications can be modeled as acyclic static task
graphs (STGs) [1]. Nodes of the STG are finite, deterministic
computational tasks, and edges denote dependencies between
the nodes. Node weights represent the amount of computation
associated with a node. Edge weights model the amount of
communication needed to transfer results between the nodes.
Computational nodes block until their data dependencies are
resolved, i.e. when they have all needed data. Details of the
task graph parallelization system employed in this paper can
be found in [2].

This paper presents a new mapping algorithm called Op-
timal Subset Mapping (OSM) to speedup architecture explo-
ration. It is compared to two variants of Simulated Annealing
algorithm (SA and SA+AT) [2][3], Group Migration (GM),
and their combination (Hybrid) [4]. Furthermore, a random
algorithm is used as basis for comparison. The system has
2, 4, or 8 identical processing elements (PEs). Ten random
300-node STGs are selected from [5].

II. RELATED WORK

Braun et al. [6] compared11 optimization algorithms for
distribution of tasks without data dependencies.512 tasks were
parallelized onto16 machines and total execution time was
measured for each heuristics. Our system schedules300 tasks
with data dependencies for8 PEs. It must also be noted that
our tasks have10 times more edges than tasks in [6]. They do
approximately3 000 mappings for each SA run, which can
be shown to be far too few for16 machines and512 tasks in
the case that tasks are dependent [2]. Our SA implementation
does approximately200 000 mappings for a single run with
dependent tasks. Their paper does not present convergence
properties of SA as a function of iterations, and we are not
aware of related work that measures SA convergence for task
mapping with respect to iterations and the number of PEs.

Our earlier work [3] presented a heuristics for automatically
selecting temperature schedule for SA to speedup convergence
of dependent tasks. Also, [2] presented heuristics to select
total iteration number for reasonable efficiency for SA with
dependent tasks. This paper will merge those results and
compare them to various mapping algorithms, including the
new OSM.

III. STUDIED ALGORITHMS

The mapping algorithms can be classified as follows. First,
is the algorithm deterministic (same results on every inde-
pendent run) or probabilistic (result varies between runs).
Second, does algorithm accept a move to worse state along
the run (non-greedy) or only better moves (greedy). Hence,4
categories can be identified.



Architecture exploration needs an automatic selection of
optimization parameters depending on the architecture andap-
plication sizes. Otherwise, an algorithm may spend excessive
time optimizing a small systems or result in a sub-optimal
solution for a large system. The goal is to avoid unnecessary
optimization iterations, while keeping application performance
close to architecture limits. This will save optimization time
and thus speed up architecture exploration.

The term move means here the change of the location
(PE) of one or multiple tasks. All studied algorithms (except
random) ensure that move is always made to a different PE,
which saves many iterations. This is a crucial detail forgotten
in many papers. For example, randomizing a single task for2
PEs will result in50% of iterations being useless because the
task is not actually moved anywhere.

STGs are used because there exists well known efficient and
near optimal scheduling algorithms for them. This ensures that
the observed differences are due to mapping. Harder schedul-
ing properties would diminish accuracy of mapping analysis.
All presented algorithms are agnostic of STG structure, andso
they will also work with general process networks like Kahn
Process Networks (KPN) [7]. These algorithms are also used
in our Koski flow, that has a KPN-like process network [8].
Koski is a high-level design tool for multiprocessor SoCs and
applications.

Details of the used algorithms can be found in [2][3][4]
but use of these algorithms is presented next. The new OSM
algorithm is introduced in detail.

For each algorithm, tasks are initially mapped to one PE.

A. Group Migration (GM)

Group migration (GM), also known as Kernighan-Lin graph
partitioning algorithm [9], is a deterministic algorithm that
moves one task at time and finds an optimal mapping for
that. It accepts only moves to a better state (one with smaller
cost). Therefore, it is greedy algorithm and may get stuck to
a local minimum. This happens when there is no single move
that improves (decreases) the cost, and GM terminates. This
algorithms does not need any parameters. The exact algorithm
used here is presented in [2]. The worst case iteration countis
in O((M −1)N2), whereM is the number of PEs andN the
number of tasks. A starting point near a local optimum will
converge much more rapidly.

B. Variants of Simulated Annealing (SA)

SA is a probabilistic non-greedy algorithm [10] that ex-
plores search space of a problem by annealing from a high to
a low temperature state. This paper uses two versions of SA
that are presented in [2] and [3]. Algorithm performs random
changes in mapping with respect to the current mapping state.

SA algorithm always accepts a move into a better state, but
also into a worse state with a probability that decreases along
with the temperature. Thus the algorithm becomes greedier
on low temperatures. The acceptance probability function and
the number of iterations per temperature level is set by the
method presented in [2]. The annealing schedule function,

initial temperatureT0 and the final temperatureTf are selected
by the method in [3]. The algorithm terminates when the final
temperature is reached and sufficient number of consecutive
moves have been rejected.

The basic version of simulated annealing is referred here as
SA and one with automatic temperature selection asSA+AT.
In general, SA+AT achieves nearly the same performance as
SA but in considerably fewer iterations. The Hybrid algorithm
[4] uses SA for initial optimization and finishes the mapping
with GM. The parameters for SA variants are temperature
range (initial and final), number of temperature levels, scaling
between levels, and number of iteration on each level. Further-
more, move heuristic, acceptance function, and end condition
must be defined.

The total number of iterations for SA is

(
log

Tf

T0

log q
+ 1)N(M − 1), (1)

whereq is the temperature scaling factor [2].

C. Random

A simple random mapping algorithm is included just to
obtain basis for algorithm comparison. The algorithm tries
random mappings without regarding the results from previous
iterations, hence it is probabilistic and non-greedy. The only
parameter is the number of random mappings.

IV. OPTIMAL SUBSET MAPPING (OSM)

The new Optimal Subset Mapping (OSM) algorithm takes a
random subset of tasks and finds the optimum mapping in that
subset by trying all possible mappings (brute-force search).
This is called a round. Tasks outside the subset are left in place.
OSM is probabilistic because it chooses a subset randomly
at every round. It is also greedy because it only accepts an
improvement to the best known solution at each round. OSM
algorithm was inspired by Sequential Minimal Optimization
(SMO) algorithm [11]. SMO is used for solving a quadratic
programming problem and has a static subset size of2, but
the subset size in OSM is dynamic during run-time. Also, the
total number of iterations in OSM is bounded by task graph
and architecture characteristics.

The pseudo-code of OSM is shown in Fig. 1. Variable
S denotes the current (mapping) state,C is the cost,X
is subset size, andR is a round number used to track
progress of the algorithm. FunctionCost(S) evaluates the
cost function for the mapping stateS and minimum S is
sought. FunctionPick Random Subset(S,X) picks a ran-
dom subset ofX separate tasks from mappingS. Function
Apply Mapping(S, Ssub) takes whole mappingS and subset
mappingSsub. It copies mappings fromSsub to S.

Initially, the subset sizeX = 2. If no improvement has
been found within lastRmax = ⌈ N

Xmax
⌉ rounds, the subset

size X is increased by1. If there was some improvement,
X is decreased by1. The subset sizeX is bounded to
[Xmin,Xmax], whereXmin = 2. The algorithm terminates



OPTIMAL SUBSET MAPPING(S)
1 Sbest ← S
2 Cbest ← COST(S)
3 X ← 2
4 for R← 1 to ∞
5 do Cold best ← Cbest

6 S ← Sbest

7 Subset← PICK RANDOM SUBSET(S,X)
8 for all possible mappings Ssub in Subset
9 do S ← APPLY MAPPING(S, Ssub)

10 C ← COST(S)
11 if C < Cbest

12 then Sbest ← S
13 Cbest ← C
14 if modulo(R,Rmax) = 0
15 then if Cbest = Cold best

16 then if X = Xmax

17 then break
18 X ← X + 1
19 else X ← X − 1
20 X ← MAX(Xmin,X)
21 X ← M IN(Xmax,X)
22 return Sbest

Fig. 1. Pseudo-code of Optimal Subset mapping algorithm.

when none of the lastRmax rounds improved the solution
and maximum subset size is reached (X = Xmax).

Upper bound for subset sizeX is needed to limit the number
of iterations. It can be derived as

MX = cN cNM cM , (2)

whereN is the number of tasks andM is the number of PEs.
c, cN and cM are arbitrary positive coefficients used to limit
iterations with respect to system size defined byN andM .
It is recommended thatcN , cM ≥ 1 to reach acceptably good
results. Solution to (2) is

Xmax = ⌊ log(c) + cN log(N) + cM log(M)

logM
⌋. (3)

As a consequence, the number of iterations increases as
N andM increase. The total number of mappings forRmax

rounds is in

O(
N1+cNM cM

logN + logM
). (4)

V. EXPERIMENT SETUP

The experiment uses10 random graphs with300 nodes
from the Standard Task Graph set [5]. The communication
weights were generated randomly from uniform distribution.
The resultingcommunication-to-computationratios varied be-
tween graphs. The minimum, average and maximum byte/s
for tasks in graphs are8.1 Mbyte/s, 217.8 Mbyte/s, 525.6
Mbyte/s. This is the rate at which tasks will produce data in
these graphs. Random graphs are used to evaluate optimization
algorithms as fairly as possible. Non-random applicationsmay

TABLE I

APPLICATION AND ARCHITECTURE PARAMETERS FOR THE EXPERIMENT

Value

# graphs 10

# tasks per graph (N ) 302

# edges per graph
(1)

1594, 5231, 8703

comp time per task [us]
(1)

3.2, 5.1, 7.0

comm vol per task [byte]
(1)

26, 1111, 3679

comm/comp -ratio [Mbyte/s]
(1)

8, 218, 526

max theor. parallelism [no unit]
(1)

4.3, 7.9, 12.8

# PEs (M ) 2, 4, 8

PE freq [MHz] 50

Bus Freq [MHz]
(2)

10, 20, 40

Bus width [bits] 32

Bus bandwidth [Mb/s]
(2)

320, 640, 1280

Bus arb. latency [cycles/send] 8

# runs per graph per alg (3) 10

algorithms 6

   determ, non-greedy 1: OSM

   determ, greedy 1: GM

   stoch., non-greedy
4: SA, SA+AT, 

hybrid, random 

   stoch, greedy -

Notes:
(1)

 = min, avg, max
(2)

 = values for 2,4,8 PEs, respectively
(3)

 = only 1 run for GM

                Variable
                                    (note)

T
as

k
 g

ra
p

h
s

H
W

 P
la

tf
o

rm
A

lg
o

ri
th

m
s

well be relevant for common applications, but they are danger-
ously biased for general algorithm comparison. Investigating
algorithm bias and classifying computational tasks based on
the bias are outside the scope of this paper. Random graphs
have the property to be neutral of the application. The task
graphs are summarized in Table I along with HW platform
and measurement setup.

The SoC platform is a message passing system where each
PE has some local memory, but no shared memory. Each graph
was distributed onto2, 4 and 8 identical PEs. The PEs are
interconnected with a single, dynamically arbitrated shared bus
that limits the SoC performance due to bus contention. Bus
frequency is low in order to highlight the differences between
algorithms when HW resources are very limited. However, bus
frequency is scaled with system size, as shown.

Total of 6 algorithms are compared. Optimization was run
10 times independently for each task graph, except with GM
that needs only1 run due to its deterministic behavior. The
optimization software was written in C language and executed
on a10-machine Gentoo Linux cluster, each machine having
a single2.8 GHz Intel Pentium 4 processor and1 GiB of
memory. A total of 2 · 109 mappings were tried in1869
computation hours (78 days) leading to average297mappings

s .

The optimization parameters of the experiment are shown
in Table II.



TABLE II

OPTIMIZATION PARAMETERS FOR THE EXPERIMENT

Alg. Value

# iter per T ,  (L= N· (M-1 )) (1) 602, 1208, 2416

# temperature levels 181

# temperature scaling q =0.95

range of T (SA and hybrid) (2) T 0 = 1.0, T f =0.0001

range of T (SA+AT) T  range coefficient k =2

annealing schedule  (T 0 , i ) T 0  · q
floor(i/L)

move heuristic move 1 random task

acceptance function (1 +exp(ΔC  / (0.5 C 0  T )) 
-1

end condition
T=T f 

AND L  rejected moves

Rand # max interations 262 144

GM no params needed -

coefficient c 1.0

exponent c N 1.0

exponent c M 1.0

subset size X  [#tasks] (1) 9, 5, 3

# iterations per subset (1) 512, 1024, 512

Notes:
(1)

 = values for 2,4,8 PEs, respectively
(2)

 = T0 and Tf computed automatically in SA+AT

            Variable
                                      (note)

OSM

SA, 

SA+AT, 

Hybrid

VI. RESULTS

For simplicity, the cost function considers only the ex-
ecution time. Hence, gain equals speedup and speedup is
defined ast1

tM
, whereti is the graph execution time oni PEs.

The results are discussed according to average gain, progress
of gain with respect to required iterations, and differences
between graphs.

A. Gain

Figure 2 shows averaged speedups for each algorithm. Ran-
dom mapping is clearly the worst algorithm and the difference
between it and others grows with the number of PEs. Other
5 algorithms have almost equal performance, Hybrid being
marginally better than others and GM and OSM slightly worse
than others. SA, SA+AT and Hybrid are only marginally
different in gain, from0.01 to 0.04 gain units difference.

The average speedup grows with system size. For2 PEs,
total PE utilization varied from77% to 99.7%. For 4 PEs,
from 52% to 76%. And, for 8 PEs, from 37% to 51%.
Interconnect utilization was nearly100% as parallelization
is communication bounded. Therefore, the gains are clearly
lower than theoretical maximum parallelism. Average theoret-
ical maximum parallelism is7.9 for these graphs. It is defined
by dividing the sum of computation times by the computation
time of the critical path and neglecting the communication
costs.

Variance in gain values is small, but there is a notable
difference in the number of iterations that algorithms require
during optimization. This will be analyzed next.

B. Time behavior of algorithms

Figure 3 shows the averaged speedups with respect to
number of iterations for8 PE system. The results with2
and 4 PEs are similar but omitted for brevity. Note that
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Fig. 2. Achieved gain averaged over10 STGs.

the time for running an optimization algorithm is directly
proportional to the number of iterations when graph sizeN
and the architecture sizeM are fixed. Iterations are shown on
a logarithmic scale and the first1 000 evaluations are omitted
from the figure.

GM needs many iterations to achieve any speedup but once
that occurs the speedup increases very rapidly. A total opposite
is the new OSM algorithm. It reaches almost the maximum
speedup level with very limited number of iterations. SA,
SA+AT and Hybrid lie between these extremes, and they
achieve the highest overall speedup.

Random mapping saturates quickly and further iterations are
unable to provide any speedup.

Hybrid algorithm converges very slowly due to a simple
but inefficient temperature schedule. But once it is in the
right temperature range (200 000 iterations), it converges up
very rapidly. SA+AT has an optimized temperature range
that starts rapid convergence already at20 000 iterations and
reaches the maximum before the Hybrid starts converging.
The Hybrid algorithm does many independent annealings in
different temperature ranges, and also uses group migration,
and thus reaches a slightly higher maximum than SA+AT. If
normal SA were plotted on Figure 3, it would follow Hybrid
algorithm exactly till 380 000 iterations, because Hybrid
algorithm begins with a normal SA.

C. Trade-off between gain and required iterations

Clearly, algorithms proceed at different speeds, i.e. gain
increases with varying slope. The average slope is defined as

average gain slope =
gain

#iterations
.

It defines how much the gain increases with one iteration on
average.

Figure 4 shows the average gain slope values of algo-
rithms relative to that of random mapping. Random mapping
algorithm was chosen to be a reference to measure ease
of parallelization. The slopes of GM and Hybrid decrease
rapidly with system size, i.e. they spend rapidly increasing
time with larger systems. Considering this trade-off between
optimization result and time needed, OSM and SA+AT are the
best algorithms.
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TABLE III

ROUNDS AND MAPPING ITERATIONS FOROSM

PEs rounds Thousands of
(min, avg, max) iterations (min, avg, max)

2 271, 380, 611 34.1, 37.2, 73.6
4 239, 469, 899 80.6, 115.4, 259.1
8 199, 428, 1099 57.1, 88.8, 293.9

For 4 PEs, OSM algorithm is23%, 48%, −23% and951%
more efficient than GM, SA, SA+AT and Hybrid, respectively.
Efficiency is defined as achieved gain divided by the number of
mapping iterations needed. The save in wall clock optimization
time are20%, 35%,−25% and91%, respectively. This makes
SA+AT a clear winner because it is only0.03 gain units slower
than Hybrid, but noticeably the fastest.

For 8 PEs, OSM algorithm is405%, 330%, 137% and
2955% more efficient in average gain slope compared to GM,
SA, SA+AT and Hybrid, respectively. The save in wall clock
optimization time are81%, 79%, 62% and97%, respectively.
That is, OSM is very efficient. However, SA+AT has a12%
or 0.40 units higher gain number than OSM, which makes
SA+AT a very good candidate for the8 PE case.

Table III shows rounds and iterations for OSM algorithm.
The average number of rounds varies from380 to 469 due
to its parameter selection scheme, and the average number of
iterations scales up with the number of processors.

D. Differences between the graphs

There are differences in obtained gain depending on the
graph. The progress of OSM, SA+AT and GM for each graph
is shown in Figure 5. Each line represents different graph.
Results are for8 PEs. OSM starts saturating always at the
same point, after104 iterations, for every graph, as illustrated
in Figure 5(a). However, the gains differ at most+50% (gain
of 3.7 vs 2.5). Both GM and SA+AT had similar difference
between the best and worst case graphs. SA+AT achieves the
largest speedup among algorithms at the beginning (iterations
1 - 1 000) due to its random mapping style in the beginning
of annealing. Consequently, the differences between graphs
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Fig. 4. The best gain divided by the number of iterations. Values are relative
to random mapping.

become visible already at small iteration counts whereas
they are observed only at the end with OSM and GM. The
difference in iteration counts between graphs varied at most
by factor of3 for OSM, due to its subset size changing policy.
Other algorithms were varied much less than that.

It turned out that the same graphs performed worse with
every algorithm. The studied graphs varied in terms of con-
nectivity and branching (number of edges) and computation
amount. We carefully analyzed the correlation between the
static properties of task graphs and achieved gain. However,
no causal relation was found. For example, the two worst
graphs had many edges (7109 and 8703) but the best had
also many (7515). It is our optimistic hope that the presented
results therefore present the “general” case as well.

E. Discussion

The Hybrid algorithm reaches the best speedup, but it is
only marginally better than other SA variants. GM and OSM
are clearly worse in8 PE case, but do almost as well in2 and
4 PE cases. This shows that Hybrid and SA variants are more
scalable than OSM and GM. However, in terms of average
gain slope, OSM and SA+AT the most scalable algorithms
(see Section VI-C).

Hybrid and SA converge so slowly that they are useless
for large scale architecture exploration. SA+AT is as good as
SA in speedup but converges much more rapidly due to its
parameter selection method. GM converges slowly compared
to SA variants. OSM converges very rapidly, and therefore
we suggest to use it early in the exploration. However, its
final result is not as high as SA, which possibly means that
another algorithm should continue after OSM, or OSM should
be improved.

Hybrid and SA variants are insensitive to initial values
due to their random nature in high temperatures. GM is
highly sensitive to initial values due to its deterministicand
greedy nature, and therefore we advice against using it without
independent runs from different initial values. Effect of initial
values to OSM is an open question, but it is reasonable to
assume it depends on the maximum subset size and graph
structure.
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Fig. 5. OSM, SA+AT and GM progress plotted for each graph.

VII. C ONCLUSION

This paper presented a new mapping algorithm, Optimal
Subset Mapping (OSM), and it is compared to5 other algo-
rithms. OSM was developed to make architecture exploration
faster. The results show large differences on the number or
required iterations during the optimization so that OSM is
a strong candidate for a rapid mapping algorithm when the
number of iterations is taken into account. Simulated annealing
with automatic temperature selection (SA+AT) gives nearly
the best gain with reasonable effort, but OSM is faster in
convergence. When only the speedup is measured, differences
are small among algorithms.

Also, the paper presented convergence properties of5 algo-
rithms with respect to iteration number, number of processors
and different random graphs. Convergence properties of OSM
and GM have opposite behavior and SA comes between these
two. The convergence figures presented in this paper should
help architecture explorers choose a suitable algorithm for task
mapping. OSM and SA+AT are the recommended choices of
these algorithms.

Future research should try to integrate rapid convergence
properties of OSM to other algorithms, create a non-greedy
version of OSM to have similar advantages as SA+AT, increase
the granularity of subsets of tasks (map several subsets of tasks
optimally, instead of mapping a subset of tasks optimally),and
analyze the relation between graph properties and gain.
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Abstract— Design space exploration aims to find an energy-
efficient architecture with high performance. A trade-off is
needed between these goals, and the optimization effort should
also be minimized. In this paper, we evaluate heterogeneous
multiprocessor architectures by optimizing both energy and
performance for applications. Ten random task graphs are
optimized for each architecture, and evaluated with simulations.
The energy versus performance trade-off is analyzed by looking
at Pareto optimal solutions. It is assumed that there is a
variety of processing elements whose number, frequency and
microarchitecture can be modified for exploration purposes. It
is found that both energy-efficient and well performing solutions
exist, and in general, performance is traded for energy-efficiency.
Results indicate that automated exploration tools are needed
when the complexity of the mapping problem grows, starting
already with our experiment setup: 6 types of PEs to select from,
and the system consists of2 to 5 PEs. Our results indicate that our
Simulated Annealing method can be used for energy optimization
with heterogeneous architectures, in addition to performance
optimization with homogeneous architectures.

I. I NTRODUCTION

An efficient multiprocessor SoC (MPSoC) implementation
requires automated exploration to find an efficient HW al-
location, task mapping and scheduling [1]. Heterogeneous
MPSoCs are needed for low power, high performance, and
high volume markets [2]. The central idea in multiprocessing
SoCs is to increase performance while decreasing energy
consumption. This is achieved by efficient communication
between cores and keeping clock frequency low.

Mapping means placing each application component to
some processing element (PE). Scheduling means determining
execution order of the application components on the platform.
A large design space must be pruned systematically, since
the exploration of the whole design space is not feasible
[1]. Fast optimization procedure is desired in order to cover
reasonable design space. However, this comes with the ex-
pense of accuracy. Iterative optimization algorithms evaluate
a number of application mappings for each resource allocation
candidate. For each mapping, the application is scheduled
and simulated to evaluate the cost of the solution, i.e. the
value of the objective function. The objective function may
consider multiple parameters, such as execution time, commu-

nication time, memory, energy consumption and silicon area
constraints. Figure 1(a) shows the mapping process.

We present an experiment where a set of hardware archi-
tectures is generated by random, and applications are mapped
on them. Hardware architectures are2 to 5 PE systems
with both singlescalar and superscalar PEs with frequencies
from 100MHz to 300MHz. The total area of the system is
limited to 8mm2. Applications are300 node acyclic static
task graphs (STGs) [3]. Figure 1(b) shows the application,
its mapping, and the hardware platform. The application is
optimized for each architecture with respect to the energy for
that is consumed when the application is run. Resulting energy
and execution time values for each architecture are analyzed
to find Pareto optimal architectures. Hence, applications are
optimized with a single objective (energy), but architectures
are analyzed by two objectives.

With the constraints of our experiment, the results show
there is a clear trade-off for energy and performance. Low
number of PEs means weak performance, but low power. High
number of PEs means more performance, but loses energy-
efficiency. Also, increasing number of PEs creates demand for
automated exploration tools, as the mapping problem becomes
more important and increasingly harder.

II. RELATED WORK

Our earlier work [4] evaluated various mapping algorithms
to determine optimization convergence rate when application
performance was maximized. This paper adds heterogeneous
PEs to the problem. Simulated annealing (SA) was found to
be an efficient algorithm, and therefore, it is used also in
this paper. SA is a probabilistic non-greedy algorithm [5]
that explores search space of a problem by annealing from
a high to a low temperature state. These methods are also
used in our Koski flow [6]. Koski is a high-level design tool
for multiprocessor SoCs and applications. Koski utilizes Kahn
Process Networks [7] for application modeling.
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Fig. 1. Diagram of the optimization process and the system that is optimized

III. E XPERIMENT SETUP

A. Objective And Optimization Algorithm

An experiment was done to investigate trade-offs between
energy and application performance. The objective function (1)
is to minimize the total energy consumption (static + dynamic).
The energy is measured in relative values. It is not a physical
energy unit.

E = T (Ps + Pd) = T (

N∑

i=1

Aifmax + k

N∑

i=1

AifiUi) (1)

whereT is the execution time of the application, determined
in simulation.N is the number of PEs,Ai is the area of PE
i and fi is its frequency.fmax is the maximum frequency
of any PE or interconnect, which is at least200MHz in this
experiment because the bus operates at200MHz. Utilization
Ui is the proportion of non-idle cycles of the PEi. The HW
architecture defines valuesAi and fi whereas the mapping
indirectly definesT and valuesUi.

Coefficient k is the factor that changes the relative pro-
portion of static versus dynamic energy. Energy values are

comparable whenk value is constant. The effect of dynamic
power can be eliminated by settingk = 0. The static power
part Ps of the objective function depends on the number of
transistors (relative toA) and their speed (relative tofmax).
The dynamic power partPd depends on total capacitance
(relative toA), switching frequencyfi, and activityUi. Supply
voltage is assumed fixed.

Simulated annealing algorithm was used to optimize en-
ergy (1) by changing application mappings. The algorithm is
specified in [8], but modified in two ways. First, the objective
function is the application energy on a given platform. Second,
the algorithm is run twice for each solution, and the second run
always starts from the best solution of the first run. This was
done to increase confidence in results, as the SA is stochastic.
SA temperature margin value2 was used to scale initial and
final temperatures [4].

B. Simulated HW Platform

The simulated SoC platform for the experiment is a message
passing system where each PE has some local memory, but
no shared memory. The system is simulated on the behavior
level. Each PE and interconnection resource is available for
a single action at a time. PE task context switch overhead is
0 cycles, but bus arbitration time is8 cycles for each transfer.

Figure 1(b) presents simulated HW platform. PEs are in-
terconnected with two shared buses that are independently
and dynamically arbitrated. The shared buses limit SoC per-
formance due to contention, latency and throughput. Bus
frequency is200MHz for both buses and they are32 bits wide.
The bus silicon area is0.1mm2 per processor. Each node in the
task graph sends a specific number of bytes after computation,
thus creating contention on the shared buses. Which ever bus
is free at a time is used for communication by using FIFO
arbitration, i.e. which ever PE comes first gets the bus.

Table I shows different types of PEs, each presented with
a letter. Multiprocessor architectures were varied using these
PEs. An architecture consists of2 to 5 PEs, and the total
area has8mm2 upper-bound. Architectures are presented with
fingerprint codes from these letters. Parameterp is the average
number of instructions per cycle. Frequencyf has3 values:
100MHz, 200MHz and300MHz. Processor speed is measured
in millions of operations per second, which equalsp ∗ f . A is
the area in square millimeters. Each PE can be implemented
as a singlescalar or as a superscalar version. The superscalar
version can executep = 1.8 instructions per clock. The
singlescalar version has areaA = 1mm2, superscalar has
A = 2mm2. 2 values ofp and3 values off implies6 different
PEs. A task graph node ofn cycles can be computed innfp
time.

C. Architecture Fingerprinting

Architecture fingerprintingis used to present results. An
architecture is characterized by a series of letters from A to F.
Letters are labels for different PEs specified in Table I. Letters
are assigned in the order of increasing number of operations
per second. Letter A is assigned for the slowest PE, and letter F



TABLE I

AVAILABLE PROCESSOR TYPES

PE type f (MHz) p ( Ops
cycle

) Speed (MOps
s

) A (mm2)

A 100 1.0 100 1
B 100 1.8 180 2
C 200 1.0 200 1
D 300 1.0 300 1
E 200 1.8 360 2
F 300 1.8 540 2

TABLE II

PROPORTION OF HOW MANY TIMES A GIVEN NUMBER AND TYPE OFPE

WAS IN THE EXPERIMENT’ S 141 FINGERPRINTS. TABLE VALUES ARE

EXPLAINED IN SECTION III-D.

PE 1 PE 2 PEs 3 PEs 4 PEs 5 PEs PE prop.
type (%) (%) (%) (%) (%) (%)

A 28.4 10.6 2.8 0.7 0.7 43.3
B 28.4 7.1 1.4 0.0 0.0 36.9
C 30.5 9.2 4.3 1.4 0.7 46.1
D 31.9 8.5 5.7 1.4 0.7 48.2
E 31.9 10.6 2.1 0.0 0.0 44.7
F 29.1 9.2 1.4 0.0 0.0 39.7
Any 0.0 14.2 27.7 33.3 24.8

is assigned for the fastest PE. Each PE in the architecture gets
a single letter in the architecture fingerprint. The lettersare
organized into alphabetical order to facilitate human brain’s
pattern recognition, i.e. make it easier to see slow, fast and
same type of PEs. For example, AAB fingerprint means a
three PE architecture with two PEs of type A and one PE of
type B. The two PEs of type A are in the beginning of the
series to display that there are exactly two instances of A in
the architecture and that they are the slowest PEs.

The architecture fingerprint can be extended for hetero-
geneous interconnections by separating PE selections and
interconnection selections with a dash (-). However, the in-
terconnection is the same for all architectures in this paper,
and therefore, it is omitted.

D. Random Architectures

141 different architectures were generated. Homogeneous
architectures, the architectures with only one type of PE, were
inserted manually, and the rest were generated randomly. The
total area for each architecture was limited to8mm2. Table II
shows the proportion of how many times a given number and
type of PE was in all the fingerprints. Rows indicate PE types,
and columns indicate proportion of PEs. The last row shows
the proportion of architectures with a given number of PEs.
The last column shows the proportion of architectures that
had at least one PE of that row’s type. For example, row
A’s third column value means that10.6% of architectures had
exactly2 PEs of type A. Last row’s third column value means
that 14.2% of the fingerprints had exactly2 PEs. Row A’s
last column shows that0.433 ∗ 141 = 61 architectures had
at least one A type PE. The table has zeroes due to area
constraints. For example, an architecture with4 B type PEs
does not exist, because one B type PE takes2mm2, and its
associated interconnect area is0.1mm2. Therefore, the total
area is4 ∗ (2 + 0.1)mm2 > 8mm2.

TABLE III

ATTRIBUTES AND LIMITS OF THE EXPERIMENT

Attribute Values

Number of architectures 141
Maximum architecture area 8mm2

Number of PEs 2 to 5
in each architecture
Number of 300 node graphs 10

Objective function to T (
∑

Aifmax + k
∑

AifiUi),
optimize energy wherei is from 1 to N PEs
k values 0, 1, 4
Optimization algorithm Simulated annealing

E. Applications

The experiment uses ten random task graphs with300 nodes
from the Standard Task Graph set [9]. Random graphs are used
to avoid bias in algorithms and results. Nodes of the STG
are finite, deterministic computational tasks, and edges denote
dependencies between the nodes. Node weights represent the
amount of computation associated with a node. Edge weights
model the amount of communication needed to transfer results
between the nodes. Computational nodes block until their data
dependencies are resolved, i.e. when they have all needed
data. The edge weights were generated randomly from uniform
distribution.

STGs are used because there exists well known efficient and
near optimal scheduling algorithms for them [3]. This ensures
that the observed differences in optimization results are due to
mapping, not scheduling. More complex scheduling properties
would diminish accuracy of mapping analysis. However, this
experiment is agnostic of the STG structure, and so it could
be done with general process networks like Kahn Process
Networks (KPN).

F. Experiment Data

Table III shows attributes that were varied in the experiment.
Each of the10 task graphs was optimized and simulated
against each architecture. This was done for three values of
k = 0, 1 or 4 to change static versus dynamic energy balance.
Thus, total of10 ∗ 141 ∗ 3 = 4230 simulations was run.

G. Software

The optimization software and simulator was written in C
language and executed on a9 machine Red Hat Enterprise
Linux WS release 3 cluster, each machine having a single
2.8 GHz Intel Pentium 4 processor and1 GiB of memory.
Jobs were distributed to a cluster withjobqueue[10] (version
control snapshot2008-05-30) by using OpenSSH [11] and
rsync [12]. No special clustering software or configurations
was used. A total of8.48 · 108 mappings was evaluated in
optimization in27.4 computation days leading to average of
358mappings

s . Rapid mapping evaluation is a benefit of STGs.

IV. RESULTS

Figure 2 plots energy versus execution time for each archi-
tecture fork = 1 that emphasizes static energy. Figure 3 plots
the same data fork = 4, i.e. bigger weight on dynamic energy.
Energy values are summed and time values are summed for
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Fig. 3. Energy-time plot for different architectures withk = 4

each application. EnergyE is the sum of objective function
values (1) for a given architecture. Execution timeT is the sum
of execution times for a given architecture. Time is measured
in seconds. Time is comparable even between differentk
values, but energy is not. A pair(E, T ) presents a data point,
or architecture, in the figure.E varied in range[1.7, 3.1] for
k = 1, and [4.0, 5.8] for k = 4. Execution time sumT varied
in range[0.43, 3.85]ms for both cases.

Pareto optimal solution boundary is marked with straight
lines. These are not absolute Pareto optimums as not all possi-
ble architectures were evaluated. A Pareto optimal architecture
is such that improving either energy or execution time leads
to worsening the other factor. That is, in the Pareto optimal
architectures, there are no two architectures where the other
is better in terms of both energy and execution time.

TABLE IV

TOP10 ARCHITECTURES TOGETHER WITH3 PARETO OPTIMAL

ARCHITECTURES FORk = 0. ARCHITECTURES ARE LABELED WITH

RESPECT TO THEIR ARCHITECTURE FINGERPRINTS. PARETO OPTIMAL

ARCHITECTURES ARE MARKED WITH*. B EST VALUES IN EACH COLUMN

ARE IN BOLD.

Arch. E T EAA
E

TAA
T

UP UI A
finger- (1) (ms) (1) (1) (%) (%) (mm2)

print

CC* 0.925 1.926 1.999 1.999 100 10 2.4
DD* 0.925 1.285 1.999 2.998 100 14 2.4
CCC 0.928 1.289 1.993 2.989 100 28 3.6
DDD* 0.928 0.860 1.991 4.481 99 41 3.6
CCE 0.935 1.016 1.977 3.789 99 35 4.6
CE 0.935 1.375 1.977 2.800 100 13 3.4
DF 0.936 0.917 1.976 4.199 100 20 3.4
DDF* 0.936 0.678 1.975 5.677 99 51 4.6
CCCC 0.941 0.980 1.965 3.931 98 52 4.8
CEE 0.941 0.840 1.964 4.583 99 42 5.6
DFF* 0.943 0.561 1.961 6.864 99 62 5.6
FFF* 0.953 0.482 1.939 7.999 98 73 6.6
DFFF* 1.001 0.428 1.847 9.005 90 96 7.8

A. Top Architectures

Table IV, Table V and Table VI show top10 and all
Pareto optimal architectures for casesk = 0, k = 1 and
k = 4, respectively.k = 0 case is practically pure performance
optimization, although measured in energy, butk = 1 and
k = 4 are strictly energy optimization. EnergyE and total
execution timeT are absolute values, and they are comparable
to the slowest2-PE architecture AA.EAA

E is the energy gain
over AA architecture, the bigger the better.TAA

T is the speedup
over AA architecture, the bigger the better.UP is the mean
PE utilization.UI is the mean interconnect utilization.A is
the area measured in square millimeters.

CC wins energy with all values ofk. In k = 1 case, it is
1.7% more energy-efficient than the nearest3 PE solution,
CCC. It is 4, 5% more energy-efficient than the nearest4
PE solution, CCCC. When the role of the dynamic energy
increases ink = 4, the differences are larger:2.5% and6.2%
against CCC and CCCC, respectively.

DFFF is the fastest architecture, and also a Pareto optimum.
It has the highest performance processors given the area
constraints. Note that5 PE solutions do not have performance
advantage over4 PE solutions due to area constraints. For all
values ofk, DFFF runs at4.5× speed compared to the most
energy-efficient architecture CC. However, it consumes only
8.2% (k = 0) to 14.3% (k = 4) more energy.

Most energy-efficient architectures have lower interconnect
utilization UI and higher processor utilizationUP than the
fastest architectures. Lower processor utilization in high per-
formance architectures can be explained with high peeks of
performance demand that they can satisfy. Low performance
architectures have longer task queues during peeks, which
balances the load in time, but makes the critical path longer.

Approximately half the architectures are homogeneous in
top 10.

Table VII and Table VIII show the proportion of how many
times a given number and type of PE was in top10 least



TABLE V

TOP10 ARCHITECTURES TOGETHER WITH3 PARETO OPTIMAL

ARCHITECTURES FORk = 1. FIGURE 2 SHOWS ARCHITECTURES

GENERATED FORk = 1 CASE.

Arch. E T EAA
E

TAA
T

UP UI A
finger- (1) (ms) (1) (1) (%) (%) (mm2)

print

CC* 1.707 1.926 1.541 1.999 100 10 2.4
DD* 1.708 1.285 1.541 2.998 100 14 2.4
CCC 1.736 1.289 1.516 2.988 99 27 3.6
DDD* 1.737 0.860 1.515 4.479 99 40 3.6
CE 1.773 1.376 1.484 2.800 100 13 3.4
DF 1.773 0.917 1.484 4.199 100 19 3.4
CCE 1.783 1.016 1.476 3.791 100 34 4.6
CCCC 1.784 0.980 1.475 3.929 98 50 4.8
DDF* 1.784 0.678 1.475 5.679 99 51 4.6
DDDD* 1.798 0.663 1.464 5.810 96 73 4.8
DFF* 1.817 0.561 1.448 6.864 99 61 5.6
FFF* 1.847 0.482 1.425 7.998 98 72 6.6
DFFF* 1.907 0.427 1.380 9.028 90 95 7.8

TABLE VI

TOP10 ARCHITECTURES TOGETHER WITH3 PARETO OPTIMAL

ARCHITECTURES FORk = 4. FIGURE 3 SHOWS ARCHITECTURES

GENERATED FORk = 4 CASE.

Arch. E T EAA
E

TAA
T

UP UI A
finger- (1) (ms) (1) (1) (%) (%) (mm2)

print

CC* 4.055 1.927 1.228 1.999 100 9 2.4
DD* 4.056 1.285 1.228 2.998 100 14 2.4
CCC 4.158 1.290 1.198 2.986 99 26 3.6
DDD* 4.159 0.861 1.197 4.476 99 40 3.6
CD 4.239 1.541 1.175 2.500 100 12 2.4
CE 4.285 1.376 1.162 2.800 100 13 3.4
DF 4.285 0.917 1.162 4.199 100 19 3.4
CCCC 4.308 0.980 1.156 3.930 98 49 4.8
DDDD* 4.319 0.663 1.153 5.812 96 71 4.8
CCE 4.325 1.018 1.151 3.785 99 33 4.6
DFF* 4.438 0.561 1.122 6.862 99 60 5.6
FFF* 4.526 0.482 1.100 7.990 98 70 6.6
DFFF* 4.633 0.430 1.075 8.952 91 93 7.8

energy consuming architectures for casesk = 1 andk = 4.
In k = 1 andk = 4 cases,2 PE solutions filled4 and5 of

the top10 positions, respectively.3 PE solutions filled4 and3
in those cases.4 PE solutions filled2 positions in both cases.2
and3 PE solutions seem suitable for low energy applications.
However,3 and4 PE solutions have high performance.

There are no A and B type PEs in the top10. This can be
attributed to poor performance and energy inefficiency.fmax

is a determining factor for static energy (1), and it puts pro-
cessors with frequency less thanfmax into disadvantage. The
minimum value offmax is 200MHz, because the interconnect
is clocked at200MHz. For this reason, A and B types are
not favored. However, C and E types have the advantage of
not increasingfmax. C type was the most common processor
among low-energy architectures.

B. Pareto Optimal Solutions

Pareto optimal solutions are labeled with asterisk (*) in
Table V and Table VI.

For the k = 1 case, static energy proportion for Pareto
optimal architectures varies between52% and 54%. For the

TABLE VII

PROPORTION OF HOW MANY TIMES A GIVEN NUMBER AND TYPE OFPE

WAS IN TOP 10 ARCHITECTURES WITHk = 1. TABLE VALUES ARE

EXPLAINED IN SECTION III-D.

PE Once Twice 3 times 4 times PE
type (%) (%) (%) (%) prop.

A 0 0 0 0 0
B 0 0 0 0 0
C 10 20 20 10 60
D 10 20 20 10 60
E 20 0 0 0 20
F 20 0 0 0 20

TABLE VIII

PROPORTION OF HOW MANY TIMES A GIVEN NUMBER AND TYPE OFPE

WAS IN TOP 10 ARCHITECTURES WITHk = 4. TABLE VALUES ARE

EXPLAINED IN SECTION III-D.

PE Once Twice 3 times 4 times PE
type (%) (%) (%) (%) prop.

A 0 0 0 0 0
B 0 0 0 0 0
C 20 20 10 10 60
D 20 10 10 10 50
E 20 0 0 0 20
F 10 0 0 0 10

k = 4 case, it varies between between21% and 23%. Thus,
the energy profile is rather uniform for both cases.

Pareto optimal solutions have2, 3 and4 PEs.2-PE solutions
do well due to low energy.3 and 4 PE systems are do well
due to a trade-off between energy and performance.

Figure 2 and Figure 3 show the clustering of solutions in the
design space. Pareto optimal solutions constitute mere5% and
6% of all solutions (7 and8 out of 141) for k = 1 andk = 4,
respectively. Therefore, automatic exploration is neededeven
when design space is limited to only6 types of PEs and2
to 5 PEs per architecture. It is not feasible to try out these
solutions by manual work.

C. Optimization Convergence

Figure 4 and Figure 5 plot ratioEAA

E against mapping
iterations for each Pareto optimal solution. The number of
iterations it takes to win AA increases as the number of
PEs increases. This comes from increased complexity of the
mapping problem and the SA mapping algorithm that scales up
iterations with respect to architecture complexity, the number
of PEs.4 PE architectures take over20000 more iterations
than 3 PE architectures to reach the level of AA (the gain
value1.0).

Our earlier work [8] presented an automated parameteri-
zation method for SA mapping. Originally it was only used
for homogeneous architectures and performance optimization.
The energy-time trade-offs presented in this paper indicate that
the method can also be used for heterogeneous architectures
and energy optimization.

In order to reach energy-efficiency of even AA architecture,
it takes tens of thousands of mappings for4 PE systems.
Hence, it is a non-trivial problem in most cases. This cre-
ates demand for automated mapping (exploration). This may
require behavior level simulation due to simulation time,
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as was done in this paper. More accurate simulation may
need thousands of CPUs. Fortunately, thousands of CPUs are
reachable with current development budgets.

V. CONCLUSION

We evaluated heterogeneous architectures by optimizing
both energy and performance for applications. The energy ver-
sus performance trade-off was analyzed by looking at Pareto
optimal solutions. It was found that both energy-efficient and
well performing solutions exist, and in general, performance is
traded for energy-efficiency. Results indicated that automated
exploration tools are needed when the mapping problem
complexity grows, starting already with our experiment setup:
6 types of PEs to select from, and the system consists of2 to

5 PEs.
Also, the results show that our Simulated Annealing method

can be used in energy optimization for heterogeneous architec-
tures, as well as in performance optimization for homogeneous
architectures.

In the future, we plan to utilize SA to directly seek an
optimal HW allocation and consider the bus or NoC energy
more closely.
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1. Introduction 

Simulated Annealing (SA) is a widely used meta-algorithm for complex optimization 
problems. This chapter presents methods to distribute executable tasks onto a set of 
processors. This process is called task mapping. The most common goal is to decrease 
execution time via parallel computation. However, the presented mapping methods are not 
limited to optimizing application execution time because the cost function is arbitrary. The 
cost function is also called an objective function in many works. A smaller cost function 
value means a better solution. It may consider multiple metrics, such as execution time, 
communication time, memory, energy consumption and silicon area constraints. Especially 
in embedded systems, these other metrics are often as important as execution time. 
A multiprocessor system requires exploration to find an optimized architecture as well as 
the proper task distribution for the application. Resulting very large design space must be 
pruned systematically with fast algorithms, since the exploration of the whole design space 
is not feasible. Iterative algorithms evaluate a number of application mappings for each 
architecture, and the best architecture and mapping is selected in the process. 
The optimization process is shown in Figure 1(a). The application, the HW platform and an 
initial solution are fed to a mapping component. The mapping component generates a new 
solution that is passed to a simulation component. The simulation component determines 
relevant metrics of the solution. The metrics are passed to a cost function which will 
evaluate the badness (cost) of the solution. The cost value is passed back to the mapping 
component. The mapping component will finally terminate the optimization process and 
output a final solution. 
The system that is optimized is shown in Figure 1(b). The system consists of the application 
and the HW platform. The application consists of tasks which are mapped to processing 
elements (PEs). The PEs are interconnected with a communication network. 
The chapter has two focuses: 
� optimize the cost function and 
� minimize the time needed for simulated annealing. 
First, the task distribution problem is an NP problem which implies that a heuristic 
algorithm is needed. The focus is on reaching as good as possible mapping. Unfortunately 
the true optimum value is unknown for most applications, and therefore the relative 
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goodness of the solution to the true optimum is unknown. Experiments rely on convergence 
rates and extensive simulations to reduce this uncertainty. This chapter focuses on single-
objective rather than multi-objective optimization. 
 

 
Figure 1(a). Optimization process. Boxes indicate data. Ellipses indicate operations. This 
chapter focuses on the mapping part. 
 

 
Figure 1(b). The system that is optimized. The system consists of the application and the 
HW platform. PE is processing element. 

Second, the focus is minimizing the optimization time. A valid solution must be found in a 
reasonable time which depends on the application and the target multiprocessor platform. 
This chapter is structured as follows. We first introduce the problem of mapping a set of 
tasks onto a multiprocessor system. Then, we present a generic SA algorithm and give 
detailed analysis how the major functions may be implemented. That is followed by an 
overview of reported case studies, including our own. Last we discuss the findings and 
present the most important open research problems. 
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2. Task mapping problem 

The application in Figure 1(b) is divided into tasks. Tasks are defined as smallest 
components in the application that can be relocated to any or some PEs in the HW platform. 
A mapping algorithm will find a location for each task on some PE. The application model is 
irrelevant for the general mapping problem as long as the application model has mappable 
tasks. Mapping can be done on run-time or design-time. There are several types of 
application models that are used in literature: directed acyclic task graphs (Kwok & Ahmad, 
1999), Kahn Process Networks (Wikipedia, 2008b) and others. 
The mapping affects several properties of the system. Affected hardware properties are 
processor utilization, communication network utilization and power. Affected software 
and/or hardware properties are execution time,  memory usage, and application and 
hardware context switches. 

2.1 Application model 
Tasks can be dependent on each other. Task A depends on task B if task A needs data or 
control from task B. Otherwise tasks are independent. There are application models with 
dependent and independent tasks. Models with independent tasks are easier to map 
because there is zero communication between tasks. This enables the problem to be solved 
in separate sub-problems. However, independent tasks may affect each other if they 
compete for shared resources, such as a PE or a communication network. Scheduling 
properties of the application model may complicate evaluating a mapping algorithm. 

2.2 Hardware platform model 
The HW platform in Figure 1(b) can be heterogeneous which means that it executes different 
tasks with different characteristics. These characteristics include speed and power, for 
example. This does not complicate the mapping problem, but affects the simulation part in 
Figure 1(a). The mapping problem is the same regardless of the simulation accuracy, but the 
mapping solution is affected. This enables both fast and slow simulation models to be used 
with varying accuracy. Inaccurate models are usually based on estimation techniques. 
Accurate models are based on hardware simulation or native execution of the system that is 
being optimized. Accurate models are usually much slower than inaccurate models and 
they may not be available at the early phase of the system design. 
Depending on the application model, all PEs can not necessarily execute all tasks. 
Restricting mappability of tasks makes the optimization problem easier and enables shortcut 
heuristics to be used in optimization. The previous definition for tasks excludes application 
components that can not be relocated, and therefore each task has at least 2 PEs where it can 
be executed. 

2.3 Limiting the scope of problems 
We assume that communicating between two processors is much more expensive than 
communicating within a single processor. To generalize this idea, it is practically happening 
inside single processor computer systems because registers can be 100 times as fast as 
physical memory, and cache memory is 10 times as fast as physical memory. Multiprocessor 
systems could spend thousands of cycles to pass a message from one processor to other. 
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This trend is constantly changing as multicore and non-asymmetric computer architectures 
are becoming more common. 
We also assume that distributed applications are not embarrassingly parallel (Wikipedia, 
2008a). 
Without previous two assumptions the optimization algorithms can be trivially replaced 
with on-demand best-effort distributed job queues. 
This paper only considers the single-objective optimization case. Single-objective 
optimization finds the minimum for a given objective function. Multi-objective optimization 
tries to minimize several functions, and the result is a set of trade-offs, or so called Pareto-
optimal solutions. Each trade-off solution minimizes some of the objective functions, but not 
all. Having a systematic method for selecting a single solution from the trade-off set reduces 
the problem into a single-objective optimization task. 

2.4 Random mapping algorithm 
Random mapping algorithm is a simple Monte Carlo algorithm that randomizes processor 
assignment of each task at every iteration. The Monte Carlo process converges very slowly 
as it does not have negative feedback for moves into worse mappings. Random mapping 
algorithm is important because it sets the reference for minimum efficiency of any mapping 
algorithm. Any mapping algorithm should be able to do better than random mapping. 
Simulated Annealing algorithm produces a "Monte Carlo -like" effect at very high 
temperatures as almost all worsening moves are accepted. 

3. Simulated annealing 

Simulated Annealing is a probabilistic non-greedy algorithm (Kirkpatrick et al., 1983) that 
explores the search space of a problem by annealing from a high to a low temperature. 
Probabilistic behavior means that SA can find solutions of different goodness between 
independent runs. Non-greedy means that SA may accept a move into a worse state, and 
this allows escaping local minima. The algorithm always accepts a move into a better state. 
Move to a worse state is accepted with a changing probability. This probability decreases 
along with the temperature, and thus the algorithm starts as a non-greedy algorithm and 
gradually becomes more and more greedy. 
This chapter focuses only on using SA for mapping. The challenge is to find efficient 
optimization parameters for SA. (Braun et al., 2001) is a comparison of different mapping 
algorithms, such as Tabu Search, Genetic Algorithms, Load Balancing algorithms and others. 
Figure 2 shows an example of SA optimization process. Optimization begins from a high 
temperature where the accepted cost changes chaotically. As the temperature decreases the 
accepted cost changes less chaotically and the algorithm becomes greedier. 
Figure 3 shows the general form of Simulated Annealing algorithm pseudo-code. Table 1 
shows symbols, functions and various parameters for the pseudo-code. The algorithm starts 
with an initial solution 0S  (state). SA iterates through solutions until a termination 

condition is reached. At each temperature level, SA moves one or several tasks to different 
PEs and evaluates the cost of the new mapping solution. Then SA either accepts or rejects 
the new solution. If the new solution is accepted, it is used as a basis for the next iteration. 
Otherwise, the new solution is thrown away. 
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Figure 2. Cost per iteration plotted for Simulated Annealing when mapping a 100 task 
application to a 4 processor system. The cost is normalized so that initial cost 0 1.0C � . The 
plot is average filtered with a 256 sample window to hide the chaotic nature of the random 
process. This is also the reason why accepted cost does not always seem to touch the best 
cost line. 

Simulated Annealing(S0)
1 S ← S0

2 C ← Cost(S0)
3 Sbest ← S
4 Cbest ← C
5 R ← 0
6 for i← 0 to ∞
7 do T ← Temp(i)
8 Snew ←Move(S, T )
9 Cnew ← Cost(Snew)

10 ΔC ← Cnew − C
11 if ΔC < 0 or Accept(ΔC, T )
12 then if Cnew < Cbest

13 then Sbest ← Snew

14 Cbest ← Cnew

15 S ← Snew

16 C ← Cnew

17 R ← 0
18 else R ← R + 1
19 if Terminate(i, R) = True

20 then break

21 return Sbest

 
Figure 3. Pseudo-code of the Simulated Annealing algorithm. See Table 1 for explanation of 
symbols. 
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Symbol Value range Definition A B C

Accept(ΔC, T ) {False,True} Return accept (True) or B
reject (False) for a worsening move B

C = Cost() C > 0 Accepted cost (to be minimized) B
C0 C0 > 0 Initial cost C
Cnew Cnew > 0 Cost of the next state C
ΔC = Cnew − C R Change of cost due to move C
i i > 0 Mapping iteration C
L L > 0 # Iterations per temperature level B
M M > 1 Number of processors A
N N > 1 Number of tasks A
q 0 < q < 1 Geometric temperature scaling factor B
R R ≥ 0 Number of consecutive rejected moves B
S mapping space Accepted state C
S0 mapping space Initial state B
Snew mapping space Next state C
Move(S, T ) mapping space Returns the next state B
T = Temp(i) T > 0 Return temperature T at iteration i B
T0 T0 > 0 Initial temperature B
Tf 0 < Tf < T0 Final temperature B
TN TN > 0 Number of temperature levels B
Terminate(i, R) {False,True} Return terminate (True) or B

continue (False)
x = random() 0 ≤ x < 1 Return a random value C
α α > 0 The number of neighbors for each A

state: α = M(N − 1)

 
Table 1. Simulated Annealing parameters and symbols. Column A indicates parameters 
related to the size of the mapping/optimization problem. Column B indicates parameters of 
the SA algorithm. Column C indicates an internal variable of the SA. 
 

The general algorithm needs a number of functions to be complete. Most common methods 
are presented in following sections. Implementation effort for most methods is low, and 
trying different combinations requires little effort. Therefore many alternatives should be 
tried. Most of the effort goes to implementing the Cost()  function and finding proper 
optimization parameters. The cost function is the simulation and cost evalution part in 
Figure 1(a). In some cases the Move heuristics can be difficult to implement. 

3.1 Cost function: Cost(S) 
Cost(S) evaluates the cost for any given state S of the optimization space. Here, each point in 
the optimization space defines one mapping for the application. Cost() can be a function of 
any variables. Without loss of generality, this chapter is only concerned about minimizing 
execution time of the application. Other factors such as power and real-time properties can 

be included. For example, 31 2( ) ww wCost S t A P� , where t is the execution time of the 

application, A is the silicon area and P is the power, and 1w , 2w  and 3w  are user-defined 

coefficients. 
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3.2 Annealing schedule: Temp(i) function 
Temp(i) determines the temperature as a function of the iteration number i. Initial 
temperature 0 (0)T Temp� . The final temperature fT  is determined implicitly by Temp() and 

Terminate() functions. Temp() function may also contain internal state, and have access to 
other annealing metrics, such as cost. In those cases Temp() is not a pure function. For 
example, remembering cost history can be used for intelligent annealing schedules. 
In geometric temperature schedules the temperature is multiplied by a factor 0 1q� �  
between each temperature level. It is the most common approach. NT  is the number of 
temperature levels. Define L to be the number of iterations on each temperature level. 
There are 3 common schedules that are defined in following paragraphs. 
Geometric Temperature Schedule 

 0( )
i

LTemp i T q
� �
� �� ��  (1) 

i

L
� �
� �� �

 means rounding down the fraction. The number of mapping iterations is NLT . 

Fractional Temperature Schedule 

 0( )
1

T
Temp i

i
�

�
 (2) 

The number of mapping iterations is NT . It is inadvisable to use a fractional schedule 
because it distributes the number of iterations mostly to lower temperatures. Doubling the 
total number of iterations only halves the final temperature. Therefore, covering a wide 

relative temperature range 0 1
f

T

T
��  is expensive. The geometric schedule avoids this 

problem. For this reason the geometric temperature schedule is the most common choice. 
Koch Temperature Schedule 
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 (3) 

where 

 , { ( ) | }i L i kstddev Cost S i L k i� � � � � �  (4) 

Koch temperature schedule (Koch, 1995; Ravindran, 2007) decreases temperature with 
respect to cost standard deviation on each temperature level. Deviation is calculated from 
the L latest iterations. Higher standard deviation, i.e. more chaotic the annealing, leads to 
lower temperature decrease between each level. The number of mapping iterations depends 
on the problem. 
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3.3 Acceptance function: Accept (�C,T)  
( , )Accept C T�  returns True if a worsening move should be accepted, otherwise False. An 

improving move ( 0C� � ) is always accepted by the SA algorithm, but this is not a part of 
Accept() behavior (although there are some implementations that explicitly do it). 
C�  has an arbitrary range and unit that depends on system parameters and the selected 

cost function. Since 
C

T

�
 is a relevant measure in acceptance functions, the temperature 

range needs to be adjusted to the C�  range, or vice versa. Following paragraphs define 4 
different acceptance functions. 

3.3.1 Inverse exponential form 

 
1

( , ) ()
1 exp( )

Accept C T random
C

T

� � � �
�

�
True  (5) 

It is important to notice that when 0C� � , the transition happens at 50% probability. This 
makes SA rather likely to shift between equally good solutions and thus find new points in 
space where a move to a better state is possible. Accepting a worsening move always has a 
probability less than 50%. Despite this, SA is rather liberal in doing random walks even at 
low temperatures. Small increases in cost are allowed even at low temperatures, but 
significant increases in cost are only accepted at high temperatures. 

Note that some implementations write the right part of (5) as 
1

()
1 exp( )

random
C

T

�
��

�
, 

which is probabilistically equivalent. 

3.3.2 Normalized inverse exponential form 

 

0

1
( , ) ()

1 exp( )
Accept C T random

C

C T

� � � �
�

�
True  (6) 

This case has all the properties of the inverse exponential form, but the cost value difference 
is normalized. The idea is that selecting the temperature range 0[ , ]fT T  is easier when it is 

independent of the cost function and the temperature always lies inside the same range 
0 1T� � . Specifically, changing the hardware platform should not make temperature range 
selection harder. Normalization keeps acceptance probabilities in a relevant range even if 

the cost function changes. Figure 4 shows specific probability curves for 
0

r

C
C

C

�
� �  that is 

used inside the exp() function. 

3.3.3 Exponential form 

 ( , ) () exp( )
C

Accept C T random
T

��
� � � �True  (7) 
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Exponential form is similar to the inverse exponential form, but 0C� �  transition happens 
always whereas the inverse exponential form accepts the same move with 50% probability. 
See the reasoning in inverse exponential case. 
 

 
Figure 4. Acceptance probability curves for the normalized inverse exponential function (6) 

with q = 0.95 . The curve represents constant values of r
0

�C
�C =

C
. Probability of moving to 

a worse state decreases when the temperature decreases. Moves to slightly worse state have 
higher probability than those with large degradation. 

3.3.4 Normalized exponential form 

 
0

( , ) () exp( )
C

Accept C T random
C T

��
� � � �True  (8) 

This case has all the properties of the exponential form, but in addition it is implied that 
temperature lies in range 0 1T� � . This is reasoned in the normalized inverse exponential 
case. 

3.4 On effective temperature range 
Annealing starts with a high acceptance rate 0p  for bad moves and it decreases to a very 

low acceptance rate fp . It is important to control the acceptance probability. If inverse 

exponential function (5) is solved with respect to T for a given probability p, we get: 

 
1

ln( 1)

C
T

p

�
�

�
  (9) 
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Assuming minimum expected cost change minC�  and maximum expected cost change 

maxC� , we get the proper temperature range 

 min max
0

0

1 1
ln( 1) ln( 1)

f

f

C C
T T T

p p

� �
� � � �

� �
 (10) 

Initial acceptance probability 0p  should be set close to 0.5, i.e. the maximum acceptance rate 
for inverse exponential function, but not too close to save optimization iterations. For 
example, 0 0.45p �  is sufficiently close to 0.5, but saves 58 temperature levels of iterations 
compared to 0 0.49p � , assuming 0.95q � . When 0C� �  the acceptance probability is 
always 50%. 
Final acceptance probability fp  can be set large enough so that a worsening move happens 

n times in the final temperature level, where n is a parameter set by the designer. If there are 
L iterations per temperature level, we set /fp n L� . If we set 0.1n � , the final temperature 

level is almost entirely greedy, and a worsening move happens with 10% probability on the 
temperature level for a given minC� . The temperature range becomes 

 min max
0

0

1
ln( 1) ln( 1)

f

C C
T T T

L

n p

� �
� � � �

� �
 (11) 

The derivation of (10) and (11) for normalized inverse exponential, exponential and 
normalized exponential functions is similar. 

3.5 Methods to determine the initial temperature 
The initial temperature 0T  was not defined in annealing schedule functions in Section 3.2. 
As was explained in Section 3.3, the initial temperature is highly coupled with the 
acceptance function. Following paragraphs present common methods for computing the 
initial temperature. Note that final temperature is usually determined implicitly by the 
Terminate() function. 

3.5.1 Heating 
The initial temperature is grown large enough so that the algorithm accepts worsening 
moves with some given probability 0p . This requires simulating a sufficient number of 
moves in the optimization space. Either moves are simulated in the neighborhood of a single 
point, or moves are simulated from several, possibly random, points. The average increase 
in cost avgC�  is computed for worsening moves. Given an acceptance function, 0T  is 

computed such that 0 0( , )avgAccept C T p� � . The solution is trivial for all presented acceptance 

functions. An example of heating is given in Section 4.2. 

3.5.2 Application and hardware platform analysis 
 
Application and hardware platform analysis can be used to determine the initial 
temperature. Rapid methods in this category do not use simulation to initialize parameters, 
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while slow but more accurate methods use simulation. An example, see (10), (11) and 
Section 4.3. 

3.5.3 Manual tuning 
Parameters can be set by manually testing different parameters. This option is discouraged 
for an automated optimization system where the problem varies significantly. 

3.5.4 Cost change normalization 
In this method the temperature scale is made independent of the cost function values. This 
is either accomplished by (6) or setting 0 0T C�  for (5). By using (6) it is easier to use other 
initial temperature estimation methods. 

3.6 Move function and heuristics: Move(S, T ) 
Move(S, T) function returns a new state based on the application specific heuristics and the 
current state S and temperature T . Move heuristics vary significantly. The simple ones are 
purely random. The complex ones analyze the structure of the application and the 
hardware, and inspect system load. 
It should be noted that given a current state value, randomizing a new state value should 
exclude the current value, i.e. current PE of the moved task in this case, for randomization 
process. For example, in two-processor system, there is a 50% probability of selecting the 
same CPU again, which means that half of the iterations are wasted. Many papers do not 
specify this aspect for random heuristics. 
Common choices and ideas for move heuristics from literature are presented in following 
sections. 

3.6.1 Single: move task to another processor 
Choose a random task and move it to a random processor. 

3.6.2 Multiple: move several tasks to other processors 
Instead of choosing only a single task to move to another processor, several tasks can be 
moved at once. The moved tasks are either mapped to the same processor, or different 
processors. If these tasks are chosen at random and each of their destinations are chosen at 
random, this approach is less likely to find an improving move than just moving a single 
task. This is a consequence of combinatorics as improving moves are a minority group in all 
possible moves. 
If a good heuristics is applied for moving multiple tasks, it is possible to climb up from a 
steep local minimum. A heuristics that only moves a single task is less likely to climb up 
from a steep local minimum. 

3.6.3 Swap: swap processes between processors 
Choose two different random processors, choose a random process on both processors, and 
swap the processes between processors. 

3.7 Heuristic move functions 
A heuristic move uses more information than just knowing the mapping space structure. 
Some application or hardware specific knowledge is used to move or swap tasks more 
efficiently. 
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3.7.1 ECP: Enhanced critical path 
Enhanced Critical Path method (Wild et al., 2003) is a heuristic move for directed acyclic task 
graphs. ECP favors swapping and moving processes that are on the critical path of the graph, 
or near the critical path. Critical path is the path with the largest sum of computation and 
communication costs in the graph. 

3.7.2 Variable grain move 
A variable grain move is a single task move that starts by favoring large execution time 
tasks statistically. Thus, tasks with large execution time are moved more likely than tasks 
with small execution time. The probability distribution is then gradually flattened towards 
equal probability for each task. At low temperatures each task is moved with the same 
probability. 

3.7.3 Topological move 
Assume tasks A and B, where A sends a message to B with a high probability after A has 
been activated. If B is the only task that gets a message from A with a high probability then 
it can be benefitial to favor moving them to the same processor. 
This heuristics could be implemented into Single task move by favoring processors of 
adjacent tasks. The probability distribution for processor selection should be carefully 
balanced to prevent mapping all tasks to the same processor, thus preventing speedup of a 
multiprocessor system. If a task sends messages to more than one task with a high 
probability, this heuristics is at least dubious and needs experimental verification. 

3.7.4 Load balancing move 
This heuristics makes heavily loaded processors less likely to get new tasks, and make 
slightly loaded processes more likely to get new tasks. Each processor's load can be 
determined by a test vector simulation, by counting the number of tasks on each processor, 
or by using more sophisticated load calculations. Each task can be attributed a constant load 
based on test vector simulations, and then each processor's load becomes the sum of loads of 
its tasks. 

3.7.5 Component move 
A task graph may consist from application or system level components each having 
multiple tasks. Separate components are defined by the designer. Instead of mapping single 
tasks, all tasks related to a single component could be mapped. This could be a coarse-grain 
starting point for finer-grain mapping. 

3.8 Other move heuristics 
3.8.1 Hybrid approach 
A hybrid algorithm might use all of the above move functions. For example, combine 
weighted task selection with weighted target PE selection (Sec 3.7.2 + 3.7.3). The move 
function can be selected by random on each iteration, or different move function can be used 
in different optimization phases. 

3.8.2 Compositional approach 
SA can be combined with other algorithms. The move function may use another 
optimization algorithm to make more intelligent moves. For example, the single move 
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heuristics might be adapted to give more weight to the best target processor determined by 
actually simulating each target. 

3.8.3 Optimal subset mapping move 
The move function can optimize a subset of the task graph. Each move will by itself 
determine a locally optimal mapping for some small subset of tasks. The number of 
mapping combinations for a subset of subN  tasks and M processors is subNM  for the brute-

force approach. The number of brute-combinations for a single subset should only be a tiny 
fraction of total number of mappings that are evaluated, that is, a large number of subsets 
should be optimized. A brute-force based approach may yield rapid convergence but the 
final result is somewhat worse than with traditional SA (Orsila et al., 2007). It is suitable for 
initial coarse-grain optimization. 

3.8.4 Move processors from router to router 
In a Network-on-Chip (NoC) system, processors can be moved from router to router to 
optimize communication between system components. 

3.8.5 Task scheduling move 
Scheduling of tasks can be done simultaneously with mapping them. Scheduling means 
determining the priorities of tasks on each processor separately. Priorities for tasks is 
determined by a permutation of all tasks. Task A has higher priority than task B if it is 
located before task B in the permutation. A permutation can be altered by swapping two 
random tasks in the Move function. The order of tasks is only relevant for tasks on the same 
processor. As an optimization for the move heuristics, most permutations need not be 
considered. 

3.9 Termination function: Terminate(i, R) 
Terminate(i, R) returns True when the optimization loop should be terminated. R is the 
number of consecutive rejected moves, maxi  is a user-defined maximum number of 

iterations, and maxR  is a user-defined maximum number of consecutive rejects. Terminate() 

function often uses the T emp() function for determining the current temperature T. 
Following paragraphs present examples and analysis of commonly used termination 
functions from literature: 

3.9.1 Maximum number of iterations 
Annealing is stopped after imax iterations: 

 max( , )Terminate i R i i� � �True  (12) 

This approach is discouraged because annealing success is dependent on actual 
temperatures, rather than iterations. Final temperature and annealing schedule parameters 
can be selected to restrict the maximum number of iterations. 

3.9.2 Temperature threshold 
Annealing is stopped at a specific temperature fT : 
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 ( , ) ( ) fTerminate i R Temp i T� � �True  (13) 

This approach is discouraged in favor of coupled temperature and rejection threshold 
because there can be easy greedy moves left. 

3.9.3 Cost threshold 
Annealing is stopped when a target cost is achieved: 

 ( , ) ( ) targetTerminate i R Cost S Cost� � �True  (14) 

For example, if the cost function measures real-time latency, annealing is stopped when a 
solution that satisfies real-time requirements is found. This heuristics should not be used 
alone because if the target cost is not achieved, the algorithm loops forever. 

3.9.4 Rejection threshold 
Annealing is stopped when maxR R� : 

 max( , )Terminate i R R R� � �True  (15) 

This approach is discouraged because there is a risk of premature termination. 

3.9.5 Uncoupled temperature and rejection threshold 
Annealing is stopped at a low enough temperature or if no improvement has occured for a 
while: 

 max( , ) ( ) fTerminate i R Temp i T R R� � � � �True  (16) 

This approach is discouraged because there is a risk of premature termination. 

3.9.6 Coupled temperature and rejection threshold 
Annealing is stopped at a low enough temperature only when no improvement has occured 
for a while: 

 max( , ) ( ) fTerminate i R Temp i T R R� � � � �True  (17) 

This approach has the benefit of going through the whole temperature scale, and continue 
optimization after that if there are acceptable moves. This will probably drive the solution 
into a local minimum. 

3.9.7 Hybrid condition 
Any logical combination of conditions 3.9.1 - 3.9.6 is a valid termination condition. 

4. Case studies 

This section summarizes 5 relevant works on the use of SA for task mapping. Task mapping 
problems are not identical but comparable in terms of SA parameterization. Selected SA 
parameterizations are presented to give insight into possible solutions. Table 2 shows move 
heuristics and acceptance functions, and Table 3 shows annealing schedules for the same 
cases. These cases are presented in detail in following sections. 
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Implementation Move Function Acceptance Function

Braun (Sec 4.1) Single Normalized Inverse Exponential
Coroyer (Sec 4.2) Single, Task Scheduling Exponential
Orsila (Sec 4.3) Single Normalized Inverse Exponential
Ravindran (Sec 4.4) Single Exponential
Wild (Sec 4.5) Single, ECP N/A  

Table 2. Simulated Annealing move heuristics and acceptance functions 

Implementation Annealing Schedule T0 End condition L

Braun (Sec 4.1) Geometric, q = 0.90 C0 Tf = 10−200 1
Coroyer (Sec 4.2) Geometric, Fractional Heuristic Heuristic α
Orsila (Sec 4.3) Geometric, q = 0.95 Heuristic Heuristic α
Ravindran (Sec 4.4) Koch T0 = 1 N/A N/A
Wild (Sec 4.5) Geometric, q = N/A N/A Heuristic N/A  

Table 3. Simulated Annealing schedules. See Table 1 for symbols. 

Single move (Sec 3.6.1) and the Geometric annealing scheduling (1) are the most common 
choices. They should be tested in every new experiment. All the cases use a single move so it 
is not covered in each case. Other choices are explicitly documented. 

4.1 Braun case 
(Braun et al., 2001) uses an inverse exponential form (5) as an acceptance function. However, 
the method uses it to actually implement a normalized inverse exponential form (6) by 
setting 0 0T C� . 

A geometric temperature schedule (1) with 0.90q �  and 1L �  is used. 
The termination condition is an uncoupled temperature and rejection threshold (16). 
Optimization is terminated when 20010fT

�� or when max 200R �  consecutive solutions are 

identical. The choice for L and fT  values are not explained. If the HW platform or the 

number of tasks were changed, then trivially the number of iterations should be adjusted as 
well. 
The initial mapping used was a random mapping of tasks. 
The paper compares SA to ten other heuristics for independent task mapping problem. SA 
got position 8/11, where 1/11 is the best position received by a genetic algorithm. We believe 
SA was used improperly in this comparison. Based on (11), we think fT  was set too low, 

and L should be much larger than 1. 

4.2 Coroyer case 
(Coroyer & Liu, 1991) do both single and task scheduling (Sec 3.8.5) moves. 
The acceptance function is exponential (7) accompanied with a heating process that puts 
acceptance probabilities to a relevant range. Initial temperature is set high enough so that 

0 0.95p �  of new mappings are accepted. If avgC�  is the average increase in cost for 

generating new solutions, the initial temperature is set to 0
0ln
avgC

T
p

��
� . This approach 

depends on the exponential acceptance  function, but it can easily be adopted for other 
acceptance functions. The average increase is determined by simulating a sufficient number 
of moves. See Section 3.5.1. 
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Both fractional (2) and geometric (1) temperature schedules are used with various 
parameters. The number of mapping iterations per temperature level is ( 1)L N M�� � � . 
The termination condition is an uncoupled temperature and rejection threshold (16). 
Optimization is terminated when 210fT

��  or when max 5R ��  consecutive solutions are 

identical. Also, a given temperature threshold (13) is used. 
The initial mapping used was a random mapping of tasks. 
They show that SA gives better results than priority-based heuristics for task mapping and 
scheduling, but SA is also much slower. 
Systematic methods are not used to tune parameters. 

4.3 Orsila case 
This case presents methods to derive SA parameters systematically from the problem 
parameters (Orsila et al., 2006). 
 
The annealing schedule is geometric with 0.95q � . The number of iterations per 
temperature level is ( 1)L N M�� � � . 
 
The initial and final temperature range 0[ , ] (0,1]fT T �  is defined with 

 max
0

min sum

kt
T

t
�  (18) 

 min

max
f

sum

t
T

kt
�  (19) 

where maxt  and mint  are the maximum and minimum execution time for any task (when it is 
activated) on any processor, min sumt is the sum of execution times for all tasks on the fastest 
processor in the system, max sumt  is the sum of execution times for all tasks on the slowest 
processor in the system, and 1k �  is a coefficient. 
The temperature range is tied to a slightly modified version of (6). The factor 0.5 is the only 
difference. 
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( , ) ()
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�

�
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The rationale is choosing an initial temperature where the longest single task will have a fair 
transition probability of being moved from one processor to another, and the same should 
hold true for the shortest single task with respect to final temperature. 

Coefficient k has an approximate relation to fp . Substituting min

00.5

C

C

�
 in place of minC�  to 

make (10) compatible with (20) gives 

 min
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1
0.5 ln( 1)

f
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C
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�
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�
 (21) 
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Now, min

00.5

C

C

�
 is approximated with min

max sum

t

t
 from (19) 
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1
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�
�
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Now comparing (19) and (22) we get the relation 

 
1

ln( 1)
f

k
p

��  (23) 

Solving (23) with respect to fp  gives us 

 
1

1f k
p

e �
�  (24) 

For 1k �  the probability fp  to accept a worsening move on the final temperature level 

given a cost change of order mint  is approximately 27%. For 2k � , probability is 12%. As k 
increases fp  decreases exponentially. Suitable values for k are in range [1, 9] unless L is very 

large (hundreds of thousands or even millions of iterations). The temperature range implied 
by 1k �  is shown in Figure 5. The temperature range is calculated with (18) and (19). (Orsila 
et al., 2007) uses 2k �  and reaches are a local minimum more likely in the end, but it is 
more expensive than 1k � . 
 

 
Figure 5. Averaged speedup with respect to temperature for 300 node graphs with different 
L values. The temperature given with (18)(19) k = 1 is labeled �predicted range�. Notice that 
temperature and the number of iterations increase in different directions. The number of 
mapping iterations increases as the temperature decreases. 

The end condition is the coupled temperature and rejection threshold (17) with maxR �� . 

4.4 Ravindran case 
(Ravindran, 2007) uses an exponential acceptance function (7). 
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A Koch temperature schedule (3) was used with parameters, including initial and final 
temperature, set manually. Termination condition is the temperature threshold (13). 
Systematic methods are not used to tune parameters. However, the Koch temperature 
schedule is mitigating factor since it affects the number of temperature levels and iterations 
based on the problem. 

4.5 Wild case 
(Wild et al., 2003) use a geometric annealing schedule (1) with unknown parameters. 
The termination condition is the uncoupled temperature and rejection threshold (16). 
They show that an ECP move heuristics (Sec 3.7.1) is significantly better than the single 
move with directed acyclic graphs. 
Systematic methods are not used to tune parameters. 

5. Analysis and discussion 

Following sections analyze the effect of iterations per temperature level, saving the number 
of iterations, give best practices for SA, and finally, SA is compared to two greedy 
algorithms and random mapping. 

5.1 Iterations per temperature level 
Figure 6 shows speedup of a 300N �  task directed acyclic graph with respect to iterations 

per temperature level L. Speedup is defined as 1t

t
, where t is the execution time of the 

optimized solution on multiprocessor system and t1 is the execution time on a single 
processor system. 

 
Figure 6. Averaged speedups for 300 node graphs with M=2-8 processing elements and 
different L values (L = 1, 2, 4, ..., 4096) for each processing element set. 

Figure 7 shows the speedup and the number of iterations for each L. These figures show that 
having ( 1) [300,600,900, ,2100]L N M�� � � � �  for the number of processors [2,3, ,8]M � �  
does not yield a significant improvement in performance but optimization time is increased 
heavily. Parameter 1L �  performs very poorly (Orsila et al., 2006). 
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Figure 7. Averaged speedup with respect to mapping evaluations for 300 node graphs with 
different L values. 

5.2 Saving optimization effort 
Choosing initial temperature 0T  and final temperature fT  is crucial for saving optimization 

iterations. With too high an initial temperature the optimization process is practically Monte 
Carlo which means it converges very slowly, and thus, initial iterations are practically 
wasted because bad moves are accepted with too high a probability. This effect is visible in 
Figure 5 at high temperatures, i.e. 210T �� . Also, too low a probability reduces the annealing 
to greedy optimization. Greedy optimization becomes useless after a short time because it 
can not espace local minima. Therefore the final temperature must be set as high as possible 
without sacrificing the greedy part in optimization. This is the rationale for (Orsila et al., 
2006) in Section 4.3. 

5.3 Simulated annealing best practices 
Based on our experiments, we have identified few rules of thumb for using SA to task 
mapping. 
1. Choose the number of iterations per temperature level ( 1)L N M�� � � , where N is the 

number of tasks and M  is the number of PEs. Thus, �  is the number of neighbouring 
mapping solutions because each of the N tasks could be relocated into at most 1M �   
alternatives. 

2. Use geometric temperature schedule with 0.90 0.98q� � . This is the most common 
choice. 

3. Device a systematic method for choosing the initial and final temperatures. As an 
example, see (10). 

4. Use coupled temperature and rejection threshold as the end condition (Section 3.9.6) 
with maxR L�  (the number of iterations per temperature level) 

5. If in doubt, use the single task move (Sec 3.6.1). This is the most common choice. Other 
move heuristics can be very useful depending on the system. For example, ECP 
heuristics (Sec 3.7.1) is efficient for directed acyclic task graphs. 

6. Use normalized inverse exponential function (6) as the acceptance function. This 
implies that temperature is always in range (0, 1]. This also means that convergence of 
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separate annealing problems can be compared with each other, and thus, effective 
annealing temperatures become more apparent through experiments. 

7. Optimize the same problem many times. On each optimization run start with the best 
known solution so far. As simulated annealing is a probabilistic algorithm it can happen 
that the algorithm drives itself to a bad region in the optimization space. Running the 
algorithm several times reduces this risk. 

8. If in doubt of any of the parameters, find them experimentally 
9. Record the iteration number when the best solution was reached. If the termination 

iteration number is much higher than the best solution iteration, maybe the annealing 
can be made more efficient without sacrificing reliability. 

5.4 Comparing SA to greedy algorithms 
Figure 8 compares SA to two greedy algorithms and Random Mapping (Orsila et al., 2007). 
A 300 task application is distributed onto 8 processors to optimize execution time. Group 
Migration (GM) is a deterministic greedy algorithm that converges slowly. GM needs many 
iterations to achieve any speedup, but once that occurs, the speedup increases very rapidly. 
Optimal Subset Mapping (OSM) is a stochastic greedy algorithm that converges very 
rapidly. It reaches almost the maximum speedup level with very limited number of 
iterations. SA convergence speed is between GM and OSM but in the end it reaches a better 
solution. Random mapping saturates quickly and further iterations are unable to provide 
any speedup. Note that SA follows the random mapping line initially as it resembles a 
Monte Carlo process at high temperatures. Random mapping is the base reference for any 
mapping algorithm since any intelligent algorithm should do better than just random. 
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Figure 8. SA convergence speed compared to GM, OSM and Random Mapping algorithms 
for mapping 300 tasks to 8 processors. SA+AT is a Simulated Annealing algorithm 
presented in Section 4.3. GM and OSM are greedy heuristics. 

SA yields 8% better result than GM, 12% better than OSM, and 107% better than random 
mapping. SA is better than the greedy algorithms because it can espace local minima. 
However, when measuring the best speedup divided with the number of iterations needed  
to achieve the best result for each algorithm the relative order is different. We normalize the 
results so that random mapping gets value 1.00. SA gets 2.58, OSM 6.11 and GM 1.21. That 
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is, OSM is 2.4 times as efficient as SA is in terms of speedup divided by iterations. SA is 2.1 
times as efficient as GM. Thus, we note that greedy local search methods can converge much 
faster than SA. 

6. Open research challenges 

This section identifies some open research challenges related to using SA for task mapping. 
The challenges are in order of importance. 
What is the optimal annealing schedule for task mapping given a hardware,  application 
model and a trade-off between solution quality and speed? The hardware and application 
model determine all possible cost changes in the system, and this is tied to probabilistic SA 
transitions. Not all temperatures are equally useful, so iterations can be saved by not 
annealing on irrelevant temperatures. For example, it is not benefitial to use lots of iterations 
at high temperatures because the process is essentially a Monte Carlo process which 
converges very slowly. 
What are the best move heuristics for each type of application and hardware model? For 
example, ECP (Sec 3.7.1) is useful for application models that have the concept of critical 
path. 
What is the optimal transition probability for 0C� � ? The probability is 0.5 in (5) and 1.0 in 
(7), but it can be selected arbitrarily. This probability determines the tendency at which SA 
travels equally good solutions in the neighborhood. Is there advantage to using either (5) or 
(7) due to this factor? 
Can SA be made faster or better by first doing coarse-grain optimization on the application 
level and then continue with finer-grain optimization? Current optimization strategies are 
concerned with sequential small changes rather than employ a top-level strategy. 
What are the relevant test cases for comparing SA to other algorithms, or other SA 
implementations? (Barr et al., 1995) have laid out good rules for comparing heuristics. 
Excluding optimization programs, is there a problem where running SA as the main loop of 
the program would be benefitial? Each Cost() call would go one or several steps further in 
the program. In other words, is SA a feasible for run-time optimization rather than being 
used as an offline optimizer? Even small problems can take significant amount of iterations 
to get parameters correctly. The application must also tolerate slowdowns. 

7. Conclusions 

This chapter presents an overview of using SA for mapping application tasks to 
multiprocessor system. We analyze the different function variants needed in SA. Many 
choices are suboptimal with respect to iteration count or discouraged due to poor 
optimization results. We find that SA is a well performing algorithm if used properly, but in 
practice it is too often used badly. Hence, we present best practices for some of those and 
review the most relevant open research challenges. 
For best practices we recommend following. Iterations per temperature level should depend 
on the problem size. Systematic methods should be used for the temperature range. 
Normalized inverse exponential function should be used. 
For open research challenges we prioritize following. Find an optimal annealing 
schedule, move function and transition probabilities for each type of common task 
mapping problems. For example, it is possible to do critical path analysis for some task 
mapping problems. 
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Abstract—Mapping an application on Multiprocessor System-
on-Chip (MPSoC) is a crucial step in architecture exploration.
The problem is to minimize optimization effort and application
execution time. Simulated annealing (SA) is a versatile algorithm
for hard optimization problems, such as task distribution on
MPSoCs. We propose an improved automatic parameter selection
method for SA to save optimization effort. The method deter-
mines a proper annealing schedule and transition probabilities
for SA, which makes the algorithm scalable with respect to
application and platform size. Applications are modeled as Kahn
Process Networks (KPNs). The method was improved to optimize
KPNs and save optimization effort by doing sensitivity analysis
for processes. The method is validated by mapping 16 to 256
node KPNs onto an MPSoC. We optimized 150 KPNs for 3
architectures. The method saves over half the optimization time
and loses only 0.3% in performance to non-automated SA. Results
are compared to non-automated SA, Group migration, random
mapping and brute force algorithms. Global optimum solution
are obtained by brute force and compared to our heuristics.
Global optimum convergence for KPNs has not been reported
before. We show that 35% of optimization runs reach within
5% of the global optimum. In one of the selected problems
global optimum is reached in as many as 37% of optimization
runs. Results show large variations between KPNs generated with
different parameters. Cyclic graphs are found to be harder to
parallelize than acyclic graphs.

I. INTRODUCTION

An efficient multiprocessor SoC (MPSoC) implementation
requires automated exploration to find an efficient HW al-
location, task mapping and scheduling [1]. Heterogeneous
MPSoCs are needed for low power, high performance, and
high volume markets [2]. The central idea in MPSoCs is to
increase performance and energy-efficiency. This is achieved
by efficient communication between cores and keeping clock
frequency low while providing enough parallelism.

Mapping means placing each application component to
some processing element (PE). Scheduling means determining
execution timetable of the application components on the
platform. A large design space must be pruned systematically,
since the exploration of the whole design space is not feasible
[1]. Fast optimization procedure is desired in order to cover
reasonable design space. However, this comes with the ex-
pense of accuracy. Iterative optimization algorithms evaluate
a number of application mappings for each resource allocation
candidate. The application is simulated for each mapping to
evaluate the cost of a solution. The cost may depend on

multiple factors, such as execution time, energy consumption
and silicon area constraints etc. Figure I(a) shows the mapping
process.

We present an experiment where a set of applications
modeled as Kahn Process Networks (KPNs) [3] are mapped
on MPSoCs that have 2 to 4 PEs connected with dual shared
bus. Figure I(b) shows a conceptual view of the application,
its mapping, and the hardware platform. The application is
optimized (mapped) for each architecture with respect to the
application execution time. Resulting execution and optimiza-
tion time values are compared to other mapping methods and
global optimum solutions. Global optimum solutions are found
by brute force search for small KPNs. We have not seen a
similar comparison in any paper. It is found that KPN and
architecture structure has a significant impact on optimization.

II. RELATED WORK

A. Kahn Process Networks (KPNs)

KPN is a distributed model of computation where a directed
graph models communicating processes that can be mapped
freely to PEs. Nodes in the graph do computation. Edges are
communication links that are unbounded FIFOs. Each node
executes a program that can read from its incoming FIFOs
and write to outgoing FIFOs. There is no restriction to what
the process may compute. Our earlier work used Static Task
Graphs (STGs) [4]. STG is a special of KPN where the graph
is acyclic, and each node does only one read-compute-write
cycle, in that order.

B. Algorithms For Task Mapping

Architecture exploration needs automatic tuning of opti-
mization parameters for architectures of various sizes. Without
scaling, algorithm may spend excessive time optimizing a
small system, or the solution is sub-optimal for a large system.
Wild et al. [5] compared SA, Tabu Search (TS) [6] and various
other algorithms for task distribution. The parameter selection
for SA had geometric annealing schedule that did not consider
application or system architecture size, and thus did not scale
up to bigger problems without manual tuning of parameters.

Braun et al. [7] compared 11 optimization algorithms for
task distribution. TS outperformed SA in [5], but was worse
in [7], which can be attributed to different parameter selection
used. Braun’s method has a proper initial temperature selection
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Fig. 1. Diagram of the optimization process and the system that is optimized

for SA to normalize transition probabilities, but their annealing
schedule does not scale up with application or system size,
making both [5] and [7] unsuitable for architecture exploration.

Our earlier papers have surveyed SA for task distribu-
tion [8], devised a method for automatically determining
SA parameters [9] for distributing STGs, optimized memory
consumption in distributing STGs [10], compared SA to other
algorithms with respect to its convergence proprties [11], and
optimized task graphs for heterogeneous architectures [12].

This paper extends and improves the method presented in
[9]. The transition from STGs to KPNs requires changes to
the parameter selection method that determines an efficient
annealing schedule. Also, the method is improved by doing
sensitivity analysis for processes. Processes with lowest exe-
cution times are ignored in the temperature range calculation
to save optimization effort. Number of mapping iterations
becomes smaller (optimization time is saved) but quality of
results is not significantly reduced. Finally, this paper presents
comparison to brute force global optimums that does not exist
in earlier work. The presented method can be applied with

SIMULATED ANNEALING(S0, T0)
1 S ← S0

2 C ← COST(S0)
3 Sbest ← S
4 Cbest ← C
5 R← 0
6 for i← 0 to ∞
7 do T ← TEMPERATURE(T0, i)
8 Snew ← MOVE(S, T )
9 Cnew ← COST(Snew)

10 ΔC ← Cnew − C
11 if ΔC < 0 or RANDOM() < ACCEPT(ΔC, T )
12 then if Cnew < Cbest

13 then Sbest ← Snew

14 Cbest ← Cnew

15 S ← Snew

16 C ← Cnew

17 R← 0
18 else if T ≤ Tf

19 then R← R+ 1
20 if R ≥ Rmax

21 then break
22 return Sbest

Fig. 2. Pseudo-code of the Simulated annealing algorithm. Bolded functions
are modified for the presented parameter selection method.

general process networks, not just KPNs in this experiment.

C. Simulated Annealing

SA is a probabilistic non-greedy algorithm [13] that ex-
plores search space of a problem by moving from a high
to a low temperature state. At each temperature level, SA
moves one or several tasks to different PEs and evaluates the
cost of new mapping solutions for each move. The algorithm
always accepts a move into a better state, but also into a worse
state with a changing probability. This probability decreases
along with the temperature, and thus the algorithm becomes
greedier. The algorithm terminates when the final temperature
is reached and sufficient number of consecutive moves have
been rejected.

Fig. 2 shows the pseudo-code of the SA algorithm used with
the new method for parameter selection. Implementation spe-
cific issues compared to the original algorithm are explained
in Section III. The Cost function evaluates execution time of
a specific mapping by calling the scheduler. S0 is the initial
mapping of the system, T0 is the initial temperature, and
S and T are current mapping and temperature, respectively.
Temperature function computes a new temperature as a
function of initial temperature T0 and iteration i. R is the num-
ber of consecutive rejects. Move function moves a random
task to a random PE, different than the original PE. Random
function returns an uniform random value from the interval
[0, 1). Accept function computes a probability for accepting
a move that increases the cost. Rmax is the maximum number
of consecutive rejections allowed after the final temperature
has been reached.



III. THE PARAMETER SELECTION METHOD FOR KPNS

The parameter selection method defines Temperature and
Accept functions for the pseudo-code presented in Figure 2.
This creates an efficient annealing schedule with effective tran-
sition probabilities. We call this method Simulated annealing
with automatic temperature (SA+AT).

A. Temperature Function

Temperature function is chosen so that annealing schedule
length is proportional to application and system architecture
size. Moreover the initial temperature T0 and final temper-
ature Tf must be in the relevant range to affect acceptance
probabilities efficiently. The method uses

Temperature(T0, i) = T0 ∗ q�
i
L �, (1)

where L is the number of mapping iterations per temperature
level, q is geometric temperature scaling factor, and i is the
current iteration count. � i

L� means round down. Temperature
T is multiplied by q every L iterations. We use q = 0.95.
It has been found suitable in our earlier papers [9][11][8].
Determining proper L value is important to assign more
iterations for larger applications and systems. This method
uses

L = N(M − 1), (2)

where N is the number of tasks and M is the number of PEs
in the system. Also, termination condition Rmax = L.

When T0 and Tf are known, the total number of iterations
itotal is approximately

itotal ∼
log

Tf

T0

log q
L (3)

Each iteration must determine the cost of mapping which is the
most time consuming operation in optimization because it is
done by simulation. Therefore, it is important to minimize the
number of temperature levels by annealing only at efficient
temperature range. Also, too low a value for L will result
in poor optimization result, and hence a delicate trade-off is
needed.

B. Accept Function

Moving tasks to different PEs affects the cost C (execution
time in this case) of the system. The absolute cost value is
case-dependent. Therefore the cost change ΔC is normalized
in the acceptance function by a factor C0 = Cost(S0),
which is the initial cost of the non-optimized system. Relative
cost ΔCr = ΔC

C0
adapts to problems that have different

process execution times and makes the algorithm more general
purpose. The accept function is defined as

Accept(ΔC, T ) =
1

1 + exp( ΔC
0.5C0T

)
.

This puts relevant transition probabilities into temperatures
range (0, 1] so that temperatures are more comparable between
different problems. As the temperature decreases the accepted
cost changes less chaotically and the algorithm becomes
greedier.

C. Determining Temperature Upper And Lower Bounds

The initial temperature is chosen by

T0 =
ktmax

tminsum
, (4)

where tmax is the maximum execution time for any task on
any PE, tminsum the sum of execution times for all tasks on
the fastest PE in the system, and k ≥ 1 is a constant that
gives a temperature safety margin. Section V-A will show that
k = 2 is sufficient in our experiment. A proper range for k is in
[1, 3]. Mathematical properties of k is discussed in more detail
in [8]. The rationale is choosing an initial temperature where
the biggest single task will have a fair transition probability
of being moved from one PE to another. Section V-A will
show that efficient annealing happens in the temperature range
predicted by the method. The chosen final temperature is

Tf =
tmin

ktmaxsum
, (5)

where tmin is the minimum execution time for any task on any
PE and tmaxsum the sum of execution times for all tasks on
the slowest PE in the system. Derivation of Equations (4)(5)
is explained in [8] (Orsila case). T0 and Tf are inside range
(0, 1].

Execution times tmin and tmax should be determined by
profiling or analyzing the KPN. To determine tmin, execute
the KPN on the fastest PE available. Record execution time
ti > 0 for each process, i.e. exclude processes that are not
executed, and compute tminsum =

∑
ti. Sort execution times

ti in increasing order, drop the lowest r percent of values, then
set tmin equal the lowest remaining value. Dropping the lowest
r percent of execution times excludes a set of processes whose
execution time is at most proportion r

100 of total execution
time. This sensitivity analysis is done to save optimization
iterations. It is an improvement over the method presented in
[9]. We use r = 5. Setting r = 0 is a safe choice, but it often
yields longer annealing schedules and does not improve the
solution.

Consider a KPN where one process executes for only a
microsecond, and others a millisecond. Ignoring the microsec-
ond process scales Tf up by 1000 saving many temperature
levels and optimization effort (3). However, not ignoring it
would add log 1

1000

log q = 135 temperature levels of optimization
effort, or evaluating 135L mappings. Effort of evaluating a
single mapping depends on the simulation model. Evaluating a
single mapping takes only a fraction of a second in this paper’s
experiment, but others may use instruction set simulators that
take minutes to evaluate a single mapping. Optimizing the
placement of the microsecond process is not significant for
execution time, but it could double the optimization effort.

Execution time tmax is computed in a similar way. Execute
the KPN on the slowest PE available and record execution
time ti > 0 for each process, and compute tmaxsum =

∑
ti.

Set tmax = max ti.
If execution times are non-deterministic, run the profiling

several times, and choose the lowest Tf and highest T0.
Alternatively, it is possible to increase the value of k.



Choosing initial and final temperature properly saves opti-
mization iterations. On a high temperature, the optimization
is practically Monte Carlo optimization because it accepts
moves to worse positions with a high probability. And thus,
it will converge very slowly to optimum because the search
space size is in O(MN ). Also, too low a probability reduces
the annealing to greedy optimization. Greedy optimization
becomes useless after a short time because it cannot escape
local minimums.

IV. EXPERIMENT SETUP

A. Algorithms

Five optimization algorithms were used to optimize map-
pings on several architectures. The goal is to minimize KPN’s
execution time with least mapping iterations.

1) SA+AT presented in Section III
2) SA+ST is the same as SA+AT but uses static temper-

ature bounds: T0 = 1.0000 and Tf = 0.0001. That is,
automatic temperature range selection is not used.

3) Brute force search is only used for 16 node KPNs due to
O(NM ) mapping space size. This gives global optimum
results that are compared to SA+AT.

4) Group migration [14] is a greedy deterministic cluster-
ing algorithm

5) Random mapping chooses a random PE for all processes
at each iteration. As new solutions do not depend
on previous iterations, random mapping is completely
unsystematic. It is the simplest non-greedy stochastic
heuristics that only reveals inherent parallelism in the
problem. Any algorithm should be better than random
mapping to justify its existence. Ironically, we got hit
by this in convergence experiment in Section V-B.

B. Simulated HW Architecture

Several experiments were run by simulating 3 MPSoC ar-
chitectures. They differ only in the number of PEs. Parameters
of simulated architectures are listed in Table I. The architecture
is a message passing system where each PE has some local
memory, but no shared memory. Each PE and interconnection
resource is available for a single action at a time. PEs are
interconnected with two shared buses that are independently
and dynamically arbitrated. Shared bus contention, latency and
throughput set limits on performance. The system uses an
event based time-behavior level simulator that rolls a time-
wheel. The timewheel uses continuous time with 64 bit floating
point accuracy. Execution times for instructions in processes
come from the KPN model. A process is blocked until it
gets the input that it requests. Each PE has processes that are
scheduled in the order that they become ready for execution
(FIFO). Shared bus messages are queued in FIFO order.
Figure I(b) presents a conceptual view of the architecture.

C. Generated Kahn Process Networks

KPNs were generated with kpn-generator [15] snapshot
2009-01-28. Table II lists parameters for kpn-generator.
Acyclic and cyclic directed graphs (KPNs) were generated.

TABLE I
SYSTEM ARCHITECTURE PARAMETERS

Parameter Value

Number of PEs 2 - 4
PE frequency 300 MHz
Number of buses 2
Bus frequency 200 MHz
Bus type Shared bus, 32 bits wide, 8 cycle arbitration,

arbitration policy: FIFO, either bus that can be
acquired first

TABLE II
KAHN PROCESS NETWORKS. N IS THE NUMBER OF NODES. (*)

INDICATES A SUM VALUE FOR THE WHOLE KPN. x IS THE TARGET

DISTRIBUTION VALUE FOR KPN-GENERATOR.

Parameter Value

N 16, 32, 64, 128 and 256
KPN categories T1: 50 acyclic graphs with x = 100%,

T2: 50 cyclic graphs with x = 100%,
T3: 50 cyclic graphs with x = 10%

For each category 10× 16 node graphs, 10× 32, . . .
10× 256, totaling 50 graphs for each
KPN category

Computation cycles (T) 213N (*)
Computation events (C) 8N (*)
Communication bytes (S) 214N (*)
b model value 0.7 for computation time

and communication size randomization
kpn-generator -n N -c C -t T -s S –target-distribution=x
parameters

Acyclic graphs are such that there is no directed path from a
node back to itself. If this criterion is not met, the graph is
cyclic. Cyclic graphs have feedback, and therefore, they are
closer to real applications than acyclic graphs.

Target distribution defines the maximum number of write
target nodes for each node. Target distribution 10% means a
node can only have directed edges to 1 + round(0.1N) pro-
cesses. Lower value means more regular structure. Targets
are uniformly randomized. 100% target distribution is very
uncommon in real applications. A low target distribution value
is more realistic.

Each KPN process is a program that consists of 3 kinds
of instructions: reads, computation events that consume CPU
cycles, and writes. Arbitrary flow control is allowed inside
programs. Therefore, KPN is a general model of computation.
The total sum of computation cycles and communication
sizes (writes) was generated by a b model that is a random
number sequence generator that produces self-similar fractal-
like patterns [16]. Default value b = 0.7 was used.

Varied KPN parameters are number of nodes N , target
distribution, cyclicity of graphs, total execution time, total
communication size and the number of computation events.
There are 3 KPN categories: T1, T2 and T3. Each category
has 50 KPNs, totaling 150 KPNs.

D. Setup A and B

Experiments were done with two setups: A and B. Setup A
uses category T1 and T2 KPNs from Table II and architecture
from Table I. Setup B uses category T1 and T3 KPNs from
Table II and the architecture from Table I with the modification
that each byte that is sent across the bus also costs one cycle



TABLE III
AUTOMATIC TEMPERATURE: SA+AT VS SA+ST SPEEDUP VALUES WITH

SETUP A

2 PEs 2 PEs 3 PEs 3 PEs 4 PEs 4 PEs
SA+AT SA+ST SA+AT SA+ST SA+AT SA+ST

Min 1.662 1.673 2.004 2.008 2.065 2.076
Mean 1.923 1.928 2.458 2.465 2.585 2.588
Std 0.073 0.071 0.152 0.150 0.101 0.098
Med 1.948 1.951 2.486 2.493 2.628 2.629
Max 2.022 2.046 2.665 2.678 2.777 2.770

for the CPU. The motivation for difference between setup A
and B is explained in Section V-B. In both setups SA+AT
and SA+ST algorithms were run 10 times independently for
each KPN and architecture combination. Initially all nodes are
mapped to a single PE.

E. Software

The optimization software and simulator was written in
C language and executed on a GNU/Linux cluster of 9
machines, each machine having a 2.8 GHz x86 processor and
1 GiB of memory. Jobs were distributed to a cluster with
jobqueue [17]. A total of 5.23 · 108 mappings was evaluated
in 66.9 computation days leading to average of 90mappings

s .

V. EXPERIMENTS AND RESULTS

Three experiments were performed.

A. Automatic Temperature Experiment

This experiment compares speedups obtained with SA+AT
and SA+ST for 2, 3 and 4 PEs with setup A and B. The
purpose is to study the trade-off between optimization time
and optimality of the results.

SA+AT uses dynamic temperature range that is analyzed
from the KPN. SA+ST uses a static (non-automatic) tempera-
ture range [0.0001, 1]. With q = 0.95 this yields 180 temper-
ature levels for SA+ST, whereas SA+AT uses approximately
half the number of levels. For 2 PEs the L = N(M−1) range
is [16, 256], 3 PEs [32, 512] and 4 PEs [48, 768], regardless of
the temperature selection method,

Table III shows average speedup values for each case. In
the 2 case, SA+AT has 1.923 mean speedup, and SA+ST
has 1.928. SA+ST yields only 0.3% larger speedup which is
negligible. The 3 PE case also has a 0.3% difference. The 4 PE
case has only 0.1%. TableIV shows the number of mappings
for each case. For 2 PE case SA+AT uses only 36% of SA+ST
iterations. For 3 PE and 4 PE cases the same values are 37%
and 49%, respectively. Results for setup B are similar.

Therefore, results indicate that automatic temperature
method does not underestimate temperature bounds. A neg-
ligible speedup loss of 0.3% is observed but at least half the
iterations are saved.

Table V shows values that were generated by the parameter-
ization method. Max iterations was obtained from experiment
results.

Figure 3 shows the effect of L to speedup and number of
iterations for 4 PEs 256 node cyclic T3 KPNs from setup B.
The parameterization method selects L = 768 which yields

TABLE IV
AUTOMATIC TEMPERATURE: SA+AT VS SA+ST NUMBER OF MAPPINGS

WITH SETUP A

2 PEs 3 PEs 4 PEs
SA+AT SA+ST SA+AT SA+ST SA+AT SA+ST

Min 470 2 900 960 5 800 1 590 8 690
Mean 6 500 17 960 13 340 35 910 26 150 53 900
Std 6 540 15 810 13 180 31 610 27 110 47 470
Med 3 530 11 590 7 390 23 170 13 800 34 760
Max 25 150 46 340 51 550 92 930 100 450 140 510

TABLE V
AUTOMATIC TEMPERATURE PARAMETERIZATION VALUES FOR SA+AT

WITH SETUP B. MEAN TLEVS IS THE MEAN NUMBER OF TEMPERATURE

LEVELS. MAX ITERS. IS OBTAINED FROM EXPERIMENT RESULTS.

2 PEs 3 PEs 4 PEs

N 16 256 16 256 16 256
L 16 256 32 512 48 768
T0 mean 0.2443 0.0379 0.2443 0.0379 0.2443 0.0379
Tf mean 0.0223 0.0012 0.0223 0.0012 0.0223 0.0012
Mean Tlevs 47 67 47 67 47 67
Max iters 1 510 29 420 3 060 59 730 4 840 92 080

1.73 speedup, L = 1024, 2048, 4096 yield 1.74, 1.76 and
1.80, respectively. Setting L = 4096 multiplies number of
iterations by 6.5 and increases speedup only by 4.1%. The
default L is efficient, but well performing.

B. Convergence Experiment

This experiment compares convergence properties of
SA+AT, Group migration and random mapping.

Figure 4 shows SA+AT, Group migration and random
mapping speedup convergence plotted as a function of map-
ping iterations. Speedup is the non-optimized execution time
divided by the optimized execution time. Higher is better. The
system being optimized has 4 PEs and category T2 KPNs
(setup A). The first 1000 iterations are omitted for clarity.

Both SA+AT and random mapping reach average speedup
2.56. Group migration reaches only 2.39 (a greedy algorithm
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Fig. 3. SA+AT convergence: Setup B: Speedup and the number of iterations
as a function of L for 4 PEs 256 node T3 KPNs. The method selects L = 768.
Both total number of iterations and maximum speedup grow with L. In the
leftmost line L = 512, rightmost L = 4096.
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Fig. 4. Convergence: Setup A: Average speedup plotted against mapping
optimization iterations. The system being optimized has 4 PEs and category
T2 KPNs. Curiously all algorithms reach practically the same speedup.
Speedup is computed as the non-optimized execution time divided by the
optimized execution time. Higher is better.

cannot overcome local minimums), which is 6.6% worse
than SA+AT and random. Random mapping being as good
as SA+AT seems odd. Random mapping has been inferior
to SA+AT in all other tests we have seen, which makes
this an interesting case. Random mapping should converge
very slowly as all iterations are independent of each other,
no systematic techniques (such as local search) or memory
is used, unlike in SA+AT. SA+AT reached 2.56 at 49 300
iterations. Random mapping converged very rapidly near the
maximum. The second iteration already had 2.22 speedup. At
1000 iterations it had 2.51 which is only 2% less than the best
solution.

Next we tried category T3 KPNs with 4 PEs. These KPNs
differ from previous case by having target distribution 10%
which forces more organization into the graph. For example,
256 node graphs can have 27 distinct targets, 16 node graphs
can have only 3 targets. Also, we added a CPU cost of 1 cycle
per byte for writes from one PE to another. Statistically this
encourages PE locality to nodes that interact with each other.
Both of these changes, independently or together, changed
results in favor of SA+AT over random mapping.

Convergence is shown in Figure 5. SA+AT reaches average
speedup 1.88, Group migration 1.76 and random mapping
1.68. Now random mapping is the worst. Much lower random
mapping speedups indicate that there is little easy parallelism.
Random mapping cannot do local search, and now even
the greedy Group migration outperforms it. This is due to
increased organization in the graph that encourages PE locality
between nodes that interact. We believe previous test with
setup A had too little systematic optimization opportunities,
and therefore random was equally good as SA+AT, but in this
case SA+AT wins because of reparameterization. In both cases
SA+AT has better speedup than Group migration.

SA+AT and Group migration show similar convergence
between Figures 4 and 5, but random mapping does not.
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Fig. 5. Convergence: Setup B: Average speedup plotted against mapping
optimization iterations for 4 PEs.
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Fig. 6. Convergence: Setup B: Average speedup plotted against mapping
optimization iterations for 2, 3 and 4 PEs.

Figure 6 shows convergence for SA+AT on 2, 3 and 4 PEs.
Speedups are averaged: 4 PEs has 1.81, 3 PEs 1.58 and 2 PEs
1.34. There is not much parallelism available, but convergence
looks similar in each case. It should be noted that the number
of optimization iterations grows with the number of PEs. It is a
consequence of our parameterization method that the number
of iterations per temperature level is L = N(M − 1).

C. Brute Force Experiment

This experiment compares SA+AT heuristics to global op-
timum solutions obtained by brute force search. Brute force
experiment parameters are listed in Table VI. The experiment
is run for setup A and B with 16 node KPNs. We were unable
to run brute force search with available computational capacity
for problems larger than 16 nodes or more than 4 PEs. Without
loss of generality, one of the 16 nodes was fixed to a PE to
decrease optimization iterations. The brute force search space
size becomes 215 ∼ 3.2E4 and 315 ∼ 1.4E7 mappings for
2 and 3 PE cases, respectively. A heuristic random algorithm
does not always have the same results. Hence, SA+AT is



TABLE VI
BRUTE FORCE EXPERIMENT PARAMETERS

Parameter Value

Algorithms SA+AT, brute force
KPNs 16 node setup A KPNs from T1 and T2 (10 + 10),

16 node setup B KPNs from T1 and T3 (10 + 10),
Architectures 2 and 3 PEs from setups A and B
SA+AT 2 setups ×2 archs ×20 graphs ×1000
runs independent optimization runs = 80 000 SA+AT runs

TABLE VII
BRUTE FORCE VS. SA+AT WITH SETUP A (100% TARGET

DISTRIBUTION): PROPORTION OF SA+AT RUNS THAT CONVERGED

WITHIN p FROM GLOBAL OPTIMUM

Exec. time overhead Proportion of runs within limit p
2 PEs 3 PEs

p = t
to

− 1 acyclic cyclic acyclic cyclic

+0% 0.043 0.033 0.004 0.002
+1% 0.104 0.085 0.017 0.014
+2% 0.287 0.268 0.090 0.051
+3% 0.547 0.458 0.274 0.120
+4% 0.770 0.647 0.476 0.231
+5% 0.892 0.836 0.678 0.392
+6% 0.948 0.936 0.842 0.593
+7% 0.976 0.987 0.941 0.776
+8% 0.995 0.999 0.983 0.913
+9% 1.000 1.000 0.997 0.975

+10% 1.000 1.000 1.000 0.995
+11% 1.000 1.000 1.000 0.999
+12% 1.000 1.000 1.000 1.000

mean mappings 748 790 1774 1754
median mappings 760 756 1759 1736

run independently 1000 times for each KPN. The results are
recorded and compared to global optimum.

The optimality of SA+AT is shown in Tables VII and VIII.
Tables show the proportion of 1000 SA+AT runs that got
execution time t ≤ (1 + p)to, where p is the execution
time overhead compared to global optimum execution time to.
p = 0% means the global optimum result. Optimum values
(mappings) were obtained by brute force search. The last
two rows show mean and median values for the number of
mappings tried in a single SA+AT run. The results are shown
for 2 and 3 PEs with 16 node acyclic and cyclic Kahn Process
Networks. Values from Table VIII are plotted in Figure 7. The
difference between Tables VII and VIII is the setup, the former
uses setup A and the latter uses setup B. Setup A has uniform
target distribution (100%). Setup B graphs are more organized
(target distribution 10%) and have less free parallelism. The
number of needed iterations (i.e. optimization time) is shown
in Tables IX and X.

Uniform target distribution (setup A) has an interesting
property that the fewer optimization runs have optimum so-
lution (p = 0%) than in setup B, but all solutions in setup
A are closer to global optimum. For example, in setup A 3
PE cyclic case, global optimum was reached in 2 out of 1000
SA+AT runs. The same value is 111 for setup B. However,
all solutions came within 12% of optimum cost in setup A,
but 28% in setup B. Therefore, it is easier to reach global
optimum in setup B, but the variance is higher. Moreover,
the mean number of mappings to reach global optimum was
reduced from 923 150 to 15 230 which is 98% reduction
due to 10% target distribution (Table IX and X). Brute force

TABLE VIII
BRUTE FORCE VS. SA+AT WITH SETUP B (10% TARGET DISTRIBUTION):

SEE TABLE VII

Exec. time overhead Proportion of runs within limit p
2 PEs 3 PEs

p = t
to

− 1 acyclic cyclic acyclic cyclic

+0% 0.358 0.374 0.056 0.111
+1% 0.418 0.435 0.072 0.160
+2% 0.540 0.478 0.101 0.223
+3% 0.612 0.543 0.173 0.275
+4% 0.685 0.622 0.271 0.349
+5% 0.792 0.650 0.348 0.435
+6% 0.856 0.716 0.446 0.493
+7% 0.884 0.730 0.538 0.554
+8% 0.918 0.756 0.623 0.609
+9% 0.940 0.789 0.722 0.692

+10% 0.962 0.817 0.801 0.747
+11% 0.969 0.846 0.867 0.785
+12% 0.980 0.886 0.913 0.820
+13% 0.992 0.922 0.945 0.868
+14% 0.996 0.951 0.967 0.890
+15% 0.997 0.960 0.981 0.907

. . . . . . . . . . . . . . .
+18% 1.000 0.984 0.998 0.953
+20% 0.992 1.000 0.975
+25% 0.999 0.997
+26% 1.000 0.998
+28% 1.000

mean mappings 795 824 1637 1692
median mappings 778 788 1610 1579
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Fig. 7. Brute force vs SA+AT with setup B: Values plotted from Table VIII.
2 PEs acyclic converges fastest, 3 cyclic is the slowest.

search for setup B 3 PE cyclic graphs took 14.3M mappings,
but SA+AT took 15 230 mappings on average, which means
99.9% reduction.

Limited target distribution (setup B) behaves quite differ-
ently w.r.t. optimization result. The optimal result is more
likely achieved, e.g. 35.8% runs for 2 PEs and acyclic graphs.
In contrast, the guarantees for optimality are weaker as the
worst runs may have overhead of 18-28%. The number of
iterations are comparable to setup A except for p = 0%.

Larger architecture naturally makes mapping more difficult.
This happens in two ways: the optimal result is less likely
found with SA; probability drops by a factor of 3.4×-16.5×



TABLE IX
BRUTE FORCE VS. SA+AT WITH SETUP A: APPROXIMATE NUMBER OF

MAPPINGS TO REACH GLOBAL OPTIMUM VALUE TIMES 1 + p

Number of mappings
2 PEs 3 PEs

acyclic cyclic Brute acyclic cyclic Brute
p SA+AT SA+AT force SA+AT SA+AT force

+0% 17 270 24 150 32 770 506 770 923 150 14.3M
+1% 7 220 9 350 . . . 102 530 128 970 . . .
+2% 2 600 2 950 19 640 34 390
+3% 1 370 1 720 6 480 14 600
+4% 970 1 220 3 720 7 610
+5% 840 940 2 620 4 480
+6% 790 840 2 110 2 960
+7% 770 800 1 890 2 260
+8% 750 790 1 800 1 920
+9% 750 790 1 780 1 800

+10% ≤ 750 ≤ 790 1 770 1 760
+11% ≤ 750 ≤ 790 ≤ 1 770 1 760
+12% ≤ 750 ≤ 790 ≤ 1 770 1 750

TABLE X
BRUTE FORCE VS. SA+AT WITH SETUP B: SEE TABLE IX

Number of mappings
2 PEs 3 PEs

acyclic cyclic Brute acyclic cyclic Brute
p SA+AT SA+AT force SA+AT SA+AT force

+0% 2 220 2 200 32 770 29 030 15 230 14.3M
+1% 1 900 1 890 . . . 22 860 10 590 . . .
+2% 1 470 1 730 16 270 7 610
+3% 1 300 1 520 9 450 6 170
+4% 1 160 1 330 6 030 4 850
+5% 1 000 1 270 4 700 3 890
+6% 930 1 150 3 670 3 430
+7% 900 1 130 3 040 3 060
+8% 870 1 090 2 630 2 780
+9% 850 1 040 2 270 2 450

+10% 830 1 010 2 040 2 270
+11% 820 980 1 890 2 160
+12% 810 930 1 790 2 070
+13% 800 890 1 730 1 950
+14% 800 860 1 690 1 900
+15% ≤ 800 860 1 670 1 870

. . . . . . . . . . . . . . .
+18% 840 1 640 1 780
+20% 830 1 740
+25% 1 700
+26% 1 700
+28% 1 690

and iteration count increases 6.9×-38.2×. The overhead p of
the worst runs increases by few units: setup A from 9% to
12%, setup B from 26% to 28%.

A clear difference was found between KPN categories.
Cyclic graphs are harder to map than acyclic. Also, lower
target distribution is easier to map than high. We believe this
is due to increased dependency of many nodes that increases
the effect of a change in mapping.

The results indicate that SA+AT performs quite well; there
is 91% probability to find mapping with p ≤ 15%, 75%
probability to find mapping with p ≤ 10% and 35% probability
to find mapping with p ≤ 5%.

Also, note that mean and median mappings are almost
constant due to parameterization. Also, saving a significant
proportion of mapping iterations may only have a small effect
on p. Unfortunately, there is no way to tell global optimum in
termination condition without brute force search.

VI. CONCLUSIONS

Distributing Kahn Process Networks (KPNs) onto multipro-
cessor SoCs was analyzed. A Simulated annealing method to
optimize process distribution was presented and validated. No
significant loss of quality was found in solutions but over half
the optimization time was saved.

Results were compared with global optimum solutions ob-
tained from brute force search. It was found that near global
optimum are frequently obtained, while in some cases as many
as 37% of solutions reach global optimum. We are unaware of
such results being published for KPNs. It is possible to save
significant proportion of optimization effort while losing little
in solution quality.

Future work should verify the method with real applications
modeled as KPNs. Also, parameter generated KPNs should be
studied to model performance characteristics of real applica-
tions to ease design space exploration.
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Subset Mapping And Convergence Evaluation of Mapping Algorithms
for Distributing Task Graphs on Multiprocessor SoC, Symposium on
SoC, 2007.

[12] H. Orsila, E. Salminen, M. Hännikäinen, T.D. Hämäläinen, Evaluation of
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